Starting from the lagrangian (linear sigma model without symmetry breaking, here $N$ is the nucleon doublet and $\tau_a$ are pauli matrices)
$L=\bar Ni\gamma^\mu \partial_\mu N+ \frac{1}{2} \partial_\mu\sigma\partial^\mu\sigma+\frac{1}{2}\partial_\mu\pi_a\partial^\mu\pi_a+g\bar N(\sigma+i\gamma_5\pi_a \tau_a)N$
we can construct conserved currents using Noether's Theorem applied to $SU(2)_L\otimes SU(2)_R$ symmetry: we get three currents for every $SU(2)$.
By adding and subtracting them, we obtain vector and axial currents.
We could have obtained vector charges quickly by observing that they are just isospin charges, so nucleons behave as an $SU(2)$ doublet (fundamental
representation), pions as a triplet (adjoint representation) and sigma as a singlet (so basically it does not transform):
$V_a=-i\int d^3x \,\,[iN^\dagger\frac{\tau_a}{2}N+\dot\pi_b(-i\epsilon_{abc})\pi_c]$
But if I wanted to do the same with axial charges, what Lie algebra/representation must I use for pions and sigma?
I mean, axial charges are
$A_a=-i\int d^3x \,\,[iN^\dagger\frac{\tau_a}{2}\gamma_5N+i(\sigma\dot\pi_a-\dot\sigma\pi_a)]$
and I would like to reproduce the second term using a representation of Lie algebra generators of axial symmetry which act on $\sigma$ and $\pi$, but I don't know the algebra (I think it is $SU(2)$), neither the representation to use.
I tried to reproduce that form using the three matrices
$T^1=\begin{bmatrix} 0&-i&0&0\\i&0&0&0\\0&0&0&0\\0&0&0&0 \end{bmatrix}\quad T^2=\begin{bmatrix} 0&0&-i&0\\0&0&0&0\\i&0&0&0\\0&0&0&0 \end{bmatrix}\quad T^3=\begin{bmatrix} 0&0&0&-i\\0&0&0&0\\0&0&0&0\\i&0&0&0 \end{bmatrix}$
which should act on the vector $(\sigma,\pi_1,\pi_2,\pi_3)$, but I calculated their commutator and they don't form an algebra, so I think I'm getting wrong somewhere in my reasoning.