I would say that when external non-conservative forces are present in a system, the model is designed by means of d'Alabert's principle, i.e. the principle of virtual work, which generalizes Euler-Lagrange.
D'Alamber's principle (principle of virtual work) states that the variation
$$\int_{t_0}^{t_1}\, \Big(\, \delta L\big(q, \, \dot{q}, \, t\big) \, - \,Q(q,\, \dot{q}, t) \cdot \delta q \, \, \Big) dt \, = \, 0$$ for any variation $\delta q = \delta q(t)$ of the trajectory of the system $q = q(t)$ that connects two fixed events $(q_0, t_0)$ and $(q_1, t_1)$. Just like in the case of Euler-Lagrange, a trajectory $q = q(t)$ is a solution, exactly when
$$\int_{t_0}^{t_1} \left( \, \Big[\,\, \frac{d}{dt}\Big(\, \frac{\partial L}{\partial \dot{q}}\big(q, \, \dot{q}, \, t\big) \, \Big) \, - \, \frac{\partial L}{\partial \dot{q}}\big(q, \, \dot{q}, \, t\big)\,\Big] \cdot \delta q \, - \, Q(q,\, \dot{q}, t) \cdot \delta q \, \, \right) dt \, = \, $$
$$\int_{t_0}^{t_1} \left( \, \Big[\,\, \frac{d}{dt}\Big(\, \frac{\partial L}{\partial \dot{q}}\big(q, \, \dot{q}, \, t\big) \, \Big) \, - \, \frac{\partial L}{\partial \dot{q}}\big(q, \, \dot{q}, \, t\big) \, - \, Q(q,\, \dot{q}, t) \, \Big] \cdot \delta q \, \, \right) dt \, = \, 0$$ which yields the equations
$$\frac{d}{dt}\Big(\, \frac{\partial L}{\partial \dot{q}}\big(q, \, \dot{q}, \, t\big) \, \Big) \, - \, \frac{\partial L}{\partial \dot{q}}\big(q, \, \dot{q}, \, t\big) \, = \, Q(q,\, \dot{q}, t)$$