Consider the Dirac Lagrangian $$\mathcal{L}=\psi ^{\dagger }\gamma ^{0}\left( \mathrm{i}\gamma ^{\rho }\partial _{\rho }-m\right) \psi .$$ The conjugate momenta to $\psi ^{a}$ are defined, as usual, by $$\pi _{a}=\partial \mathcal{% L}/\partial \dot{\psi}^{a}.$$ All references I have consulted claims that this implies that $\pi _{a}=\mathrm{i}\psi _{a}^{\dagger }$, which seems quite obvious. But why not $$\pi _{a}=-\mathrm{i}\psi _{a}^{\dagger }$$ in view of fermion anticommutation, the minus sign arising from having to pass $% \partial /\partial \dot{\psi}^{a}$ through $\psi ^{\dagger }$? Using such a minus sign, though, leads of course to a nonsensical minus sign in the anticommutation relation, $$\left\{ \psi ^{a}\left( \mathbf{x}\right) ,\psi _{b}^{\dagger }\left( \mathbf{y}\right) \right\} ~=~-\delta _{b}^{a}\delta ^{\left( 3\right) }\left( \mathbf{x}-\mathbf{y}\right) .$$ What am I missing?
Update: Following the note 'Dirac Brackets' by Steven Avery, define the following Poisson bracket (note the exact order of $\pi _{a}$ and $\psi ^{a}$): $$ \left\{ f,g\right\} _{\text{P.B.}}=\int d^{3}x\left[ -\frac{\delta f}{\delta \pi _{a}\left( \mathbf{x}\right) }\frac{\delta g}{\delta \psi ^{a}\left( \mathbf{x}\right) }+\left( -1\right) ^{\varepsilon _{f}\varepsilon _{g}}% \frac{\delta g}{\delta \pi _{a}\left( \mathbf{x}\right) }\frac{\delta f}{% \delta \psi ^{a}\left( \mathbf{x}\right) }\right] , $$ where $\varepsilon _{f}$ and $\varepsilon _{g}$ are the Grassmann parities of $f$ and $g$, respectively. For Grassmann-even $f$ and $g$, this bracket correctly reduces to the usual Poisson bracket. For the 'classical' Dirac Lagrangian, formulated in terms of Grassmann-odd $\psi^{a}$ and $\pi_{a}$, it becomes \begin{eqnarray*} \left\{ \psi ^{a}\left( \mathbf{x}\right) ,\pi _{b}\left( \mathbf{y}\right) \right\} _{\text{P.B.}} &=&-\int d^{3}z\left[ \frac{\delta \psi ^{a}\left( \mathbf{x}\right) }{\delta \pi _{c}\left( \mathbf{z}\right) }\frac{\delta \pi _{b}\left( \mathbf{y}\right) }{\delta \psi ^{c}\left( \mathbf{z}\right) } +\frac{\delta \pi _{b}\left( \mathbf{y}\right) }{\delta \pi _{c}\left( \mathbf{z}\right) }\frac{\delta \psi ^{a}\left( \mathbf{x}\right) }{\delta \psi ^{c}\left( \mathbf{z}\right) }\right] \\ &=&-\int d^{3}z\left[ 0+\delta _{b}^{c}\delta ^{\left( 3\right) }\left( \mathbf{y}-\mathbf{z}\right) \delta _{c}^{a}\delta ^{\left( 3\right) }\left( \mathbf{x}-\mathbf{z}\right) \right] \\ &=&-\delta _{b}^{a}\delta ^{\left( 3\right) }\left( \mathbf{x}-\mathbf{y} \right) . \end{eqnarray*} If $\pi _{a}=-\mathrm{i}\psi _{a}^{\dagger }$, note minus sign, then $$ \left\{ \psi ^{a}\left( \mathbf{x}\right) ,\psi_{b}^{\dagger}\left( \mathbf{y}\right) \right\} _{\text{P.B.}}=-\mathrm{i}\delta _{b}^{a}\delta ^{\left( 3\right) }\left( \mathbf{x}-\mathbf{y}\right) , $$ which using the 'quantum bracket = $\mathrm{i} \times$ Poisson bracket'-rule yields the correct quantum anticommutation relation: $$ \left\{ \psi ^{a}\left( \mathbf{x}\right) ,\psi_{b}^{\dagger}\left( \mathbf{y}\right) \right\} =\delta _{b}^{a}\delta ^{\left( 3\right) }\left( \mathbf{x}-\mathbf{% y}\right) . $$