There is this idea of relativity in Classical Mechanics:
The laws of mechanics valid in an inertial frame must also be valid in any frame moving uniformly with respect to it.
I was just trying to apply these to the case of the law of conservation of momentum and the law of conservation of angular momentum.
Let there be an inertial frame S and another frame S' moving with velocity $\mathbf{\vec{v}}$ w.r.t to S with:
$$\mathbf{\vec{r}}'_i = \mathbf{\vec{r}}_i - \mathbf{\vec{v}}t$$
$$\mathbf{\vec{v}}'_i = \mathbf{\vec{v}}_i - \mathbf{\vec{v}}$$
For momentum conservation: In frame S', putting $\dfrac{d}{dt} \sum_i \mathbf{\vec{p}}'_i = \mathbf{0}$ and substituting $\dfrac{d}{dt} \sum_i \mathbf{\vec{p}}_i = \mathbf{0}$ of frame S in it:
$$\dfrac{d}{dt} \sum_i \mathbf{\vec{p}}'_i = \dfrac{d}{dt} \sum_i \mathbf{\vec{p}}_i - \dfrac{d}{dt} \sum_i m_i \mathbf{\vec{v}} = \mathbf{0} - \mathbf{\vec{v}} \dfrac{d}{dt} \sum_i m_i$$
If this has to be $\mathbf{0}$, then $\sum_i m_i = 0$
Now, on to angular momentum. In frame S:
$$\dfrac{d}{dt} \sum_i \mathbf{\vec{L}}_i = \dfrac{d}{dt} \sum_i (\mathbf{\vec{r}}_i \times m_i\mathbf{\vec{v}}_i) = \mathbf{0}$$
Am trying to prove the law in frame S' from the law in S:
$$\dfrac{d}{dt} \sum_i \mathbf{\vec{L}}'_i = \dfrac{d}{dt} \sum_i \mathbf{\vec{L}}_i - \dfrac{d}{dt} \sum_i (\mathbf{\vec{r}}_i \times m_i\mathbf{\vec{v}}) - \dfrac{d}{dt} \sum_i (\mathbf{\vec{v}}t \times m_i \mathbf{\vec{v}}_i)$$
$$= \mathbf{0} - \dfrac{d}{dt} \sum_i (\mathbf{\vec{r}}_i \times m_i\mathbf{\vec{v}}) - \dfrac{d}{dt} \sum_i (\mathbf{\vec{v}}t \times m_i \mathbf{\vec{v}}_i)$$
$$= - \sum_i m_i (\mathbf{\vec{v}}_i \times \mathbf{\vec{v}}) - \sum_i \dfrac{dm_i}{dt} (\mathbf{\vec{r}}_i \times \mathbf{\vec{v}}) + \sum_i m_i (\mathbf{\vec{v}}_i \times \mathbf{\vec{v}}) - \sum_i m_i (\mathbf{\vec{v}}t \times \mathbf{\vec{a}}_i) - \sum_i \dfrac{dm_i}{dt} (\mathbf{\vec{v}}t \times \mathbf{\vec{v}}_i)$$
$$= - \sum_i \dfrac{dm_i}{dt} (\mathbf{\vec{r}}_i \times \mathbf{\vec{v}}) - \sum_i m_i (\mathbf{\vec{v}}t \times \mathbf{\vec{a}}_i) - \sum_i \dfrac{dm_i}{dt} (\mathbf{\vec{v}}t \times \mathbf{\vec{v}}_i)$$
$$= \mathbf{\vec{v}} \times \sum_i \dfrac{dm_i}{dt} \mathbf{\vec{r}}_i - \mathbf{\vec{v}}t \times \sum_i \mathbf{\vec{F}}_i$$
But this is what I wanted to prove to be $\mathbf{0}$. I stil have to prove the following:
For a system of particles at $\mathbf{\vec{r}}_i$ with mass $m_i$, which have forces $\mathbf{\vec{F}}_i$ acting on them such that $\sum_i \mathbf{\vec{r}}_i \times \mathbf{\vec{F}}_i = \mathbf{0}$, given $\sum_i \dfrac{dm_i}{dt} = 0$; how do I prove:
$$\mathbf{\vec{v}} \times \sum_i \dfrac{dm_i}{dt} \mathbf{\vec{r}}_i = \mathbf{\vec{v}}t \times \sum_i \mathbf{\vec{F}}_i$$
for any arbitrary $\mathbf{\vec{v}}$ and for all time $t$.