1

Feynman's Lectures, Volume 2, says that the electromagnetic force is invariant in any reference frame, and the magnetic force in one frame becomes the electric field in another.

And Wikipedia says:

That is, the magnetic field is simply the electric field, as seen in a moving coordinate system.

Can we then say that the magnetic field is just a modified "relativistic" version of the electric field?

Qmechanic
  • 201,751
A. Remorov
  • 63
  • 7
  • Read this and the links within https://physics.stackexchange.com/q/24010/104696 – Farcher Jun 10 '18 at 15:54
  • 1
    No. The electromagnetic field is inherently relativistic. There is no "non-reltivistic version" of the electromagnetic field. The field is created by moving charges. Charges moving in space create a magnetic field. Charges moving in time create an electric field. – safesphere Jun 10 '18 at 15:55
  • Dear safesphere, can you please tell me more about "Charges moving in time create an electric field. "? An object that is not moving at speed c, so moving slower is always moving in the time dimension. So a charge (moving slower then c in space) is always moving in time. Anything with rest mass (and charge has to have rest mass), is always like that, so a charge is always creating an electric field? – Árpád Szendrei Jun 10 '18 at 16:38
  • @safesphere Define "Charges moving in time" . Also, moving charges ("in space" obviously, where else) cause both an electric and a magnetic field. – my2cts Jun 10 '18 at 17:04
  • 1
    @OP "Feynman ... said that the electromagnetic force is invariant in any reference frame" . It said that the electromagnetic force is Lorentz covariant, that is transforms like a four vector. – my2cts Jun 10 '18 at 17:07
  • @ÁrpádSzendrei Yes, your logic is completely correct. A charge can move only in time (in its own rest frame) or it can move in both time and space (in any other frame). Never only in space. Therefore a charge may or may not create a magnetic field, but it always creates an electric field. A charge movement is current. When you combine movements in space and time, you get 4-current (density): https://en.m.wikipedia.org/wiki/Four-current - The 4-current has 3 spatial components reflecting the movement of the charge in space and 1 temporal component reflecting the movement of the charge in time. – safesphere Jun 10 '18 at 17:33
  • @my2cts Please see my last comment. – safesphere Jun 10 '18 at 17:35
  • @safesphere "Please see my last comment" I did and I noticed undefined and also unclear, possible erroneous statements. These are the ones I would like you to clarify. – my2cts Jun 10 '18 at 18:14
  • Thanks for the helpful comments everyone! But is it still correct to say that a magnetic field is formed by considering some electric field in a certain frame of reference? – A. Remorov Jun 10 '18 at 18:40
  • @my2cts I mean, please see my reply to Árpád Szendrei. There is a Wiki link there to the 4-current article that describes the concepts I mentioned. – safesphere Jun 10 '18 at 23:07
  • I doubt that Feynman said that the Lorentz force is invariant, because, like other vectors, force cannot be a relativistic invariant. – ProfRob Jun 18 '18 at 11:20

1 Answers1

7

enter image description here


In above Figure-02 an inertial system $\:\mathrm S'\:$ is translated with respect to the inertial system $\:\mathrm S\:$ with constant velocity
\begin{equation} \boldsymbol{\upsilon}=\left(\upsilon_{1},\upsilon_{2},\upsilon_{3}\right)=\left(\upsilon \mathrm n_{1},\upsilon \mathrm n_{2},\upsilon \mathrm n_{3}\right)=\upsilon \mathbf n\,, \qquad \upsilon \in \left(-c,c\right) \tag{01} \end{equation} The Lorentz transformation is \begin{align} \mathbf{x}^{\boldsymbol{\prime}} & = \mathbf{x}+(\gamma-1)(\mathbf{n}\boldsymbol{\cdot} \mathbf{x})\mathbf{n}-\gamma \boldsymbol{\upsilon}t \tag{02a}\\ t^{\boldsymbol{\prime}} & = \gamma\left(t-\dfrac{\boldsymbol{\upsilon}\boldsymbol{\cdot} \mathbf{x}}{c^{2}}\right) \tag{02b} \end{align} in differential form \begin{align} \mathrm d\mathbf{x}^{\boldsymbol{\prime}} & = \mathrm d\mathbf{x}+(\gamma-1)(\mathbf{n}\boldsymbol{\cdot} \mathrm d\mathbf{x})\mathbf{n}-\gamma\boldsymbol{\upsilon}\mathrm dt \tag{03a}\\ \mathrm d t^{\boldsymbol{\prime}} & = \gamma\left(\mathrm d t-\dfrac{\boldsymbol{\upsilon}\boldsymbol{\cdot} \mathrm d\mathbf{x}}{c^{2}}\right) \tag{03b} \end{align} and in matrix form \begin{equation} \mathbf{X}^{\boldsymbol{\prime}}= \begin{bmatrix} \mathbf{x}^{\boldsymbol{\prime}}\vphantom{\dfrac{\gamma\boldsymbol{\upsilon}^{\boldsymbol{\top}}}{c}}\\ c t^{\boldsymbol{\prime}}\vphantom{\dfrac{\gamma\boldsymbol{\upsilon}^{\boldsymbol{\top}}}{c}} \end{bmatrix} = \begin{bmatrix} \mathrm I+(\gamma-1)\mathbf{n}\mathbf{n}^{\boldsymbol{\top}} & -\dfrac{\gamma\boldsymbol{\upsilon}}{c} \vphantom{\dfrac{\gamma\boldsymbol{\upsilon}^{\boldsymbol{\top}}}{c}}\\ -\dfrac{\gamma\boldsymbol{\upsilon}^{\boldsymbol{\top}}}{c} & \hphantom{-}\gamma \end{bmatrix} \begin{bmatrix} \mathbf{x}\vphantom{\dfrac{\gamma\boldsymbol{\upsilon}^{\boldsymbol{\top}}}{c}}\\ c t\vphantom{\dfrac{\gamma\boldsymbol{\upsilon}^{\boldsymbol{\top}}}{c}} \end{bmatrix} =\mathrm L\mathbf{X} \tag{04} \end{equation} where $\:\mathrm L\:$ the real symmetric $\:4\times 4\:$ matrix \begin{equation} \mathrm L \equiv \begin{bmatrix} \mathrm I+(\gamma-1)\mathbf{n}\mathbf{n}^{\boldsymbol{\top}} & -\dfrac{\gamma\boldsymbol{\upsilon}}{c} \vphantom{\dfrac{\gamma\boldsymbol{\upsilon}^{\boldsymbol{\top}}}{c}}\\ -\dfrac{\gamma\boldsymbol{\upsilon}^{\boldsymbol{\top}}}{c} & \hphantom{-}\gamma \end{bmatrix} \tag{05} \end{equation} and \begin{equation} \mathbf{n}\mathbf{n}^{\boldsymbol{\top}} = \begin{bmatrix} \mathrm n_{1}\vphantom{\dfrac{}{}}\\ \mathrm n_{2}\vphantom{\dfrac{}{}}\\ \mathrm n_{3}\vphantom{\dfrac{}{}} \end{bmatrix} \begin{bmatrix} \mathrm n_{1} & \mathrm n_{2} & \mathrm n_{3} \end{bmatrix} = \begin{bmatrix} \mathrm n_{1}^{2} & \mathrm n_{1}\mathrm n_{2} & \mathrm n_{1}\mathrm n_{3}\vphantom{\dfrac{}{}}\\ \mathrm n_{2}\mathrm n_{1} & \mathrm n_{2}^{2} & \mathrm n_{2}\mathrm n_{3}\vphantom{\dfrac{}{}}\\ \mathrm n_{3}\mathrm n_{1} & \mathrm n_{3}\mathrm n_{2} & \mathrm n_{3}^{2}\vphantom{\dfrac{}{}} \end{bmatrix} \tag{06} \end{equation}
a matrix representing the vectorial projection on the direction $\:\mathbf{n}$.

The electromagnetic field is an entity and this is more clear if we take a look at its transformation. So, for the Lorentz transformation (02), the vectors $\:\mathbf{E}\:$ and $\:\mathbf{B}\:$ are transformed as follows \begin{align} \mathbf{E}' & =\gamma \mathbf{E}\!-\!\left(\gamma\!-\!1\right)\left(\mathbf{E}\boldsymbol{\cdot}\mathbf{n}\right)\mathbf{n}+\,\gamma\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{B}\right) \tag{07a}\\ \mathbf{B}' & = \gamma \mathbf{B}\!-\!\left(\gamma\!-\!1\right)\left(\mathbf{B}\boldsymbol{\cdot}\mathbf{n}\right)\mathbf{n}\!-\!\dfrac{\gamma}{c^{2}}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}\right) \tag{07b} \end{align} Now, let the Lorentz force 3-vector on a point particle with charge $\:q\:$ moving with velocity $\:\mathbf{u}\:$ with respect to $\:\mathrm S\:$ \begin{equation} \mathbf{f} = q\left(\mathbf{E}+\mathbf{u}\boldsymbol{\times}\mathbf{B}\right) \tag{08} \end{equation} This Lorentz force 3-vector with respect to $\:\mathrm S'\:$ is \begin{equation} \mathbf{f'} = q\left(\mathbf{E'}+\mathbf{u'}\boldsymbol{\times}\mathbf{B'}\right) \tag{09} \end{equation} Note that the value of the charge $\:q\:$ of a point particle is by hypothesis the same in all inertial systems (a scalar invariant), while the velocity 3-vector $\:\mathbf{u}\:$ is transformed as follows \begin{equation} \mathbf{u}^{\boldsymbol{\prime}} = \dfrac{\mathbf{u}+(\gamma-1)(\mathbf{n}\boldsymbol{\cdot} \mathbf{u})\mathbf{n}-\gamma \boldsymbol{\upsilon}}{\gamma \left(1-\dfrac{\boldsymbol{\upsilon}\boldsymbol{\cdot} \mathbf{u}}{c^{2}}\right)} \tag{10} \end{equation} equation proved by dividing equations (03a), (03b) side by side and setting $\:\mathbf{u}\equiv \mathrm d\mathbf{x}/\mathrm d t\:$, $\:\mathbf{u'}\equiv \mathrm d\mathbf{x'}/\mathrm d t'$.

Now, if in (09) we replace $\:\mathbf{E'},\mathbf{B'},\mathbf{u'}\:$ by their expressions (07a),(07b) and (10) respectively, then we end up with the following relation between the force 3-vectors
\begin{equation} \mathbf{f}^{\boldsymbol{\prime}} = \dfrac{\mathbf{f}+(\gamma-1)(\mathbf{n}\boldsymbol{\cdot} \mathbf{f})\mathbf{n}-\gamma \boldsymbol{\upsilon}\left(\dfrac{\mathbf{f}\boldsymbol{\cdot}\mathbf{u}}{c^{2}}\right)}{\gamma \left(1-\dfrac{\boldsymbol{\upsilon}\boldsymbol{\cdot}\mathbf{u}}{c^{2}}\right)} \tag{11} \end{equation} wherein the quantities of the electromagnetic field $\:\color{red}{\bf DISAPPEARED !!!}$

That's why in the early years of Special Relativity transformation (11) was believed to be valid for any force at least of the same type as the Lorentz force (more exactly for any force that doesn't change the rest mass of the particle).
Following the same path by which we construct from (10) the velocity 4-vector $\:\mathbf{U}\:$ \begin{equation} \mathbf{U} =\left(\gamma_{\mathrm u}\mathbf{u}, \gamma_{\mathrm u}c\right) \tag{12} \end{equation} we construct also from (11) the force 4-vector $\:\mathbf{F}\:$ \begin{equation} \mathbf{F} =\left(\gamma_{\mathrm u}\mathbf{f}, \gamma_{\mathrm u}\dfrac{\mathbf{f}\boldsymbol{\cdot}\mathbf{u}}{c}\right) \tag{13} \end{equation} Lorentz transformed \begin{equation} \mathbf{F'} = \mathrm L \mathbf{F} \tag{14} \end{equation} or \begin{equation} \mathbf{F}^{\boldsymbol{\prime}}= \begin{bmatrix} \gamma_{\mathrm u'}\mathbf{f'}\vphantom{\dfrac{\gamma\boldsymbol{\upsilon}^{\boldsymbol{\top}}}{c}}\\ \gamma_{\mathrm u'}\dfrac{\mathbf{f'}\boldsymbol{\cdot}\mathbf{u'}}{c} \end{bmatrix} = \begin{bmatrix} \mathrm I+(\gamma-1)\mathbf{n}\mathbf{n}^{\boldsymbol{\top}} & -\dfrac{\gamma\boldsymbol{\upsilon}}{c} \vphantom{\dfrac{\gamma\boldsymbol{\upsilon}^{\boldsymbol{\top}}}{c}}\\ -\dfrac{\gamma\boldsymbol{\upsilon}^{\boldsymbol{\top}}}{c} & \hphantom{-}\gamma \end{bmatrix} \begin{bmatrix} \gamma_{\mathrm u}\mathbf{f}\vphantom{\dfrac{\gamma\boldsymbol{\upsilon}^{\boldsymbol{\top}}}{c}}\\ \gamma_{\mathrm u}\dfrac{\mathbf{f}\boldsymbol{\cdot}\mathbf{u}}{c} \end{bmatrix} =\mathrm L\mathbf{F} \tag{15} \end{equation}

Frobenius
  • 15,613
  • Maybe worth mentioning that ${{E}^{2}}-{{B}^{2}}$ is an invariant. If it’s positive, you can find the transformation that makes B from E. If it’s negative, vice versa. – Bert Barrois Jun 12 '18 at 11:13
  • @Bert Barrois I apologize but I don't understand what do you mean with your comment. Please clarify : from one or both Lorentz invariants $:\left(\left|!\left|\mathbf{E}\right|!\right|^{2}-c^{2}\left|!\left|\mathbf{B}\right|!\right|^{2}\right):$ and $:\left(\mathbf{E}\boldsymbol{\cdot}\mathbf{B}\right):$ we could produce one or both transformation equations (07) ??? – Frobenius Jun 12 '18 at 14:38
  • 2
    There’s absolutely nothing wrong with your answer. All I’m saying is that the necessary & sufficient conditions for existence of a transformation of an arbitrary combination of E- and B-fields to/from a pure E-field are: $E\cdot B=0$ AND ${{E}^{2}}-{{B}^{2}}>0$. (Vice versa if B is stronger than E.) The OP had seen a statement which seemed to say that the B-field is nothing but a transformed E-field, but that’s not always possible. – Bert Barrois Jun 13 '18 at 11:32
  • love the diagram; are you using Inkscape? – Larry Harson Jun 21 '18 at 18:14
  • 1
    @Larry Harson : Thanks. I use GeoGebra. It's free. – Frobenius Jun 21 '18 at 20:47