27

I'm curious whether I can find the overlap $\langle q | p \rangle$ knowing only the following:

  1. $|q\rangle$ is an eigenvector of an operator $Q$ with eigenvalue $q$.

  2. $|p\rangle$ is an eigenvector of an operator $P$ with eigenvalue $p$.

  3. $Q$ and $P$ are Hermitian.

  4. $[Q,P] = i \hbar$.

I'm asking because books and references I've looked in tend to assume that $Q$ is a differential operator when viewed in the $P$-basis, then show that it satisfies the commutation relation. (I haven't read one yet that proves that the form given for $Q$ is the only possible one.) I've heard, though, that we can work purely from the hypothesis of the commutation relation and prove the properties of $Q$ and $P$ from it.

Qmechanic
  • 201,751
Mark Eichenlaub
  • 52,955
  • 15
  • 140
  • 238

2 Answers2

32

I) Here we will work in the Heisenberg picture with time-dependent self-adjoint operators $\hat{Q}(t)$ and $\hat{P}(t)$ that satisfy the canonical equal-time commutation relation

$$ [\hat{Q}(t),\hat{P}(t)]~=~ i\hbar~{\bf 1}, \tag{1}$$

and two complete sets of instantaneous eigenstates$^1$ $\mid q,t \rangle $ and $\mid p,t \rangle $, which satisfy

$$\begin{align} \hat{Q}(t)\mid q,t \rangle ~=~&q\mid q,t \rangle, \cr \hat{P}(t)\mid p,t \rangle ~=~&p\mid p,t \rangle ,\end{align}\tag{2} $$

$$ \begin{align}\langle q,t \mid q^{\prime},t \rangle~=~&\delta(q-q^{\prime}), \cr \langle p,t \mid p^{\prime},t \rangle~=~&\delta(p-p^{\prime}),\end{align}\tag{3}$$

$$\begin{align}\int_{\mathbb{R}} \!dq~ \mid q,t \rangle\langle q,t \mid~=~&{\bf 1}, \cr \int_{\mathbb{R}} \!dp~ \mid p,t \rangle\langle p,t \mid~=~&{\bf 1},\end{align} \tag{4}$$

II) We would like to give an argument$^2$ that the sought-for overlap is of the form

$$ \langle p,t \mid q,t \rangle~=~\frac{f(q,t)g(p,t)}{\sqrt{2\pi\hbar}}\exp\left(\frac{pq}{i\hbar}\right), \tag{5}$$ where $f$ and $g$ are two phase factors $|f|=|g|=1$.

In other words, we can define new instantaneous eigenstates

$$\begin{align} \mid q,t )~:=~&\frac{1}{f(q,t)} \mid q,t \rangle \cr\text{and}& \cr \mid p,t )~:=~&g(p,t) \mid p,t \rangle , \end{align}\tag{6}$$

such that the overlap takes a standard form

$$ ( p,t \mid q,t )~=~\frac{1}{\sqrt{2\pi\hbar}}\exp\left(\frac{pq}{i\hbar}\right). \tag{7}$$

The square roots in eqs. (5) and (7) are due to standard normalization factors in Fourier analysis.

III) Sketched proof: Since everything here will refer the same instant $t$, let us not write $t$ explicitly from now on. Define for convenience an anti-selfadjoint operator

$$ \hat{D}~:=~\frac{\hat{P}}{i\hbar}, \tag{8}$$

so that eq. (1) becomes

$$ [\hat{Q},\hat{D}]~=~ {\bf 1} , \tag{9} $$

or

$$ [\hat{Q},e^{a\hat{D}}]~=~ae^{a\hat{D}} , \tag{10} $$

where $a$ is a real number. It follows from (10) that the state $e^{a\hat{D}}\mid q \rangle $ must be proportional to $\mid q+a \rangle$, i.e. there exists a function $f(q,q+a)$ of two arguments such that

$$ e^{a\hat{D}}\mid q \rangle ~=~f(q,q+a)\mid q+a \rangle.\tag{11}$$

Since $e^{a\hat{D}}$ is an unitary operator, the function $f(q,q+a)$ must be a phase factor $|f(q,q+a)|=1$. Or one can use that

$$\begin{align}\delta(q-q^{\prime})~\stackrel{(3)}{=}~& \langle q \mid e^{-a\hat{D}}e^{a\hat{D}}\mid q^{\prime} \rangle \cr ~\stackrel{(11)}{=}~&\overline{f(q,q+a)}f(q^{\prime},q^{\prime}+a) \langle q+a \mid q^{\prime}+a \rangle \cr ~\stackrel{(3)}{=}~& |f(q,q+a)|^2\delta(q-q^{\prime}). \end{align}\tag{12}$$

From the fact that

$$ e^{a\hat{D}} e^{b\hat{D}}~=~ e^{(a+b)\hat{D}},\tag{13}$$

we deduce from repeated use of eq. (11) that

$$ f(q,q+b)f(q+b,q+a+b)~=~f(q,q+a+b). \tag{14}$$

Setting $q=0$ in eq. (14) yields

$$\begin{align} f(b,a+b)~=~&\frac{f(0,a+b)}{f(0,b)} \cr \Updownarrow~& \cr f(q,q+a)~=~&\frac{f(0,q+a)}{f(0,q)}. \end{align}\tag{15}$$

Hence let us define

$$ \mid q ) ~:=~f(0,q) \mid q \rangle , \tag{16}$$

so that eq. (11) becomes

$$ e^{a\hat{D}}\mid q ) ~\stackrel{(11,15,16)}{=}~\mid q+a ).\tag{17}$$

In other words, we may identify$^3$ the operator $\hat{D}$ with the differentiation operator $\frac{\partial}{\partial q}$.

$$\begin{align} \exp\left(\frac{ap}{i\hbar}\right)\langle p \mid q) ~\stackrel{(8)}{=}~& \langle p \mid e^{a\hat{D}}\mid q )\cr ~\stackrel{(17)}{=}~& \langle p \mid q+a ),\end{align}\tag{18}$$

or in the limit $a\to 0$,

$$\begin{align} \frac{p}{i\hbar}\langle p \mid q) ~=~& \langle p \mid \hat{D}\mid q )\cr ~=~& \langle p \mid \frac{\partial}{\partial q} \mid q )\cr ~=~&\frac{\partial}{\partial q} \langle p \mid q ).\end{align}\tag{19}$$

From the ODE (19) in $q$, we deduce that

$$ \langle p \mid q) ~=~g(p)\exp\left(\frac{pq}{i\hbar}\right), \tag{20}$$

where $g(p)$ is an integration constant that can depend on the parameter $p$. It is not hard to see that

$$ |g(p)|~=~\frac{1}{\sqrt{2\pi\hbar}}.\tag{21}$$

Use e.g. that

$$\begin{align} \delta(p-p^{\prime})~\stackrel{(3,4)}{=}~& \int_{\mathbb{R}} \!dq~ \langle p \mid q)(q \mid p^{\prime} \rangle\cr ~\stackrel{(20)}{=}~&\overline{g(p)}g(p^{\prime}) \int_{\mathbb{R}} \!dq~\exp\left(\frac{(p-p^{\prime})q}{i\hbar}\right)\cr ~=~~&2\pi\hbar|g(p)|^2\delta(p-p^{\prime}). \end{align}\tag{22}$$

--

$^1$ Instantaneous eigenstates are often introduced in textbooks of quantum mechanics to derive the path-integral formalism from the operator formalism in the simplest cases, see e.g. J.J. Sakurai, Modern Quantum Mechanics, Section 2.5. Note that the instantaneous eigenstates $\mid q,t \rangle $ and $\mid p,t \rangle $ are time-independent states (as they should be in the Heisenberg picture).

$^2$ Here we will only work at the physical level of rigor, ignoring various mathematical subtleties connected with unbounded operators. Also we ignore any topological aspects of the canonical phase space, such as, e.g., if the position $q$ would be a periodic variable.

$^3$ Note that the $q$-representation of the momentum operator $\hat{P}=i\hbar\frac{\partial}{\partial q}$ on kets has the opposite sign of what it has on bras and wavefunctions, cf. e.g. my Phys.SE answer here.

Qmechanic
  • 201,751
  • 1
    Standard conventions for Schrödinger & Heisenberg pictures for a Schrödinger Hamiltonian $\hat{H}_S$ with no explicit time dependence: $\quad$ TDSE: $\quad \hat{H}_S|\psi(t)\rangle_S ~=~ i\hbar d_t|\psi(t)\rangle_S.$ $\quad |\psi(t)\rangle_S ~=~ \hat{U}(t)|\psi\rangle_H.$ $\quad \hat{U}(t)~:=~\exp\left(-\frac{i}{\hbar}\hat{H}_St\right).$ $\quad \hat{A}_H(t)~=~\hat{U}(t)^{-1} \hat{A}_S\hat{U}(t).$ $\quad$ HEOM: $\quad d_t\hat{A}_H(t)~=~\frac{i}{\hbar} [\hat{H}_H,\hat{A}_H(t)] +(\partial_t\hat{A}_S)_H.$ $\quad \hat{H}_H=\hat{H}_S.$ – Qmechanic Oct 29 '12 at 00:15
  • 1
    Generalization to a Schrödinger Hamiltonian $\hat{H}_S$ with explicit time dependence: $$\quad \hat{U}(t)~:=~\left{\begin{array}{rcl} T\exp\left[-\frac{i}{\hbar}\int_0^t! dt^{\prime}~\hat{H}_S(t^{\prime})\right] &\text{for}& t ~\geq~0, \cr AT\exp\left[-\frac{i}{\hbar}\int_0^t! dt^{\prime}~\hat{H}_S(t^{\prime})\right] &\text{for}& t ~\leq~0. \end{array}\right.$$ $\quad i\hbar d_t\hat{U}(t) ~=~\hat{H}_S(t)\hat{U}(t).$ $\quad$ HEOM: $\quad d_t\hat{A}_H(t)~=~\frac{i}{\hbar}[\hat{H}_H(t),\hat{A}_H(t)] +(\partial_t\hat{A}_S)_H.$ – Qmechanic Oct 29 '12 at 00:22
  • The explicit time dependence in $(\partial_t\hat{A}_S)_H$ stems from the explicit time dependence in $\hat{A}_S$; not from the explicit time-dependence in $\hat{H}_S$. $\quad \hat{A}_H(t)~=~\hat{U}(t)^{-1} \hat{A}_S\hat{U}(t).$ So $\quad \hat{A}_H(t_2)~=~\hat{U}(t_2)^{-1}\hat{U}(t_1)\hat{A}_H(t_1)\hat{U}(t_1)^{-1}\hat{U}(t_2)$, which can generally not be written in terms of $\hat{U}(t_2,t_1)=\hat{U}(t_2)\hat{U}(t_1)^{-1}$ or, say, $\hat{U}(-t_2,-t_1).$ – Qmechanic Nov 22 '13 at 23:22
  • Heisenberg instantaneous eigenstate: $\quad \hat{A}_H(t)|A,t\rangle_H ~=~A|A,t\rangle_H.$ $\quad |A,t\rangle_H~:=~\hat{U}(t)^{-1}|A,0\rangle_H.$ $\quad$ So $\quad \hat{A}_S|A,0\rangle_H ~=~A|A,0\rangle_H.$ The notion of instantaneous eigenstate is only consistent if the corresponding operator $\hat{A}_S$ has no explicit time dependence. $\quad \psi(x,t)={}_H\langle x,t | \psi\rangle_H={}_H\langle x,0| \psi(t)\rangle_S$. $\quad {}_H\langle B,t_2 |A,t_1\rangle_H= {}_H\langle B,0|\hat{U}(t_2,t_1)|A,0\rangle_H.$ – Qmechanic Feb 09 '15 at 13:11
  • Interaction picture: $\quad \hat{H}S~=~\hat{H}{0,S}+\hat{V}S.$ $\quad |\psi(t)\rangle_I ~:=~ \hat{U}_0(t)^{-1}|\psi(t)\rangle_S~=~ \hat{U}_I(t)|\psi\rangle_H.$ $\quad \hat{A}_I(t)~:=~\hat{U}_0(t)^{-1}\hat{A}_S\hat{U}_0(t) ~=~\hat{U}_I(t)\hat{A}_H(t)\hat{U}_I(t)^{-1}.$ $\quad $ $S$, $H$ & $I$ pictures agree at $t=0$. $\quad\hat{U}_I(t)~:=~\hat{U}_0(t)^{-1}\hat{U}(t)$. $\quad i\hbar d_t\hat{U}_I(t) ~=~\hat{V}_I(t)\hat{U}_I(t).$ $\quad$ IPEOM: $\quad d_t\hat{A}_I(t)~=~\frac{i}{\hbar}[\hat{H}{0,I}(t),\hat{A}_I(t)] +(\partial_t\hat{A}_S)_I.$ $\quad$ – Qmechanic Nov 08 '18 at 10:26
  • Interaction picture instantaneous eigenstate: $\quad \hat{A}_I(t)|A,t\rangle_I ~=~A|A,t\rangle_I.$ $\quad |A,t\rangle_I~:=~\hat{U}_0(t)^{-1}|A,0\rangle_H~=~\hat{U}_I(t)|A,t\rangle_H.$ – Qmechanic Jul 14 '19 at 12:53
  • $\quad\hat{U}I(t_2,t_1)~:=~\hat{U}_I(t_2)\hat{U}_I(t_1)^{-1}~=~\hat{U}_0(t_2)^{-1}\hat{U}(t_2)\hat{U}(t_1)^{-1}\hat{U}_0(t_1)$. $$\quad \hat{U}_I(t_2,t_1)~=~\left{\begin{array}{rcl} T\exp\left[-\frac{i}{\hbar}\int{t_1}^{t_2}! dt~\hat{V}I(t)\right] &\text{for}& t_1 ~\leq~t_2, \cr AT\exp\left[-\frac{i}{\hbar}\int{t_1}^{t_2}! dt~\hat{V}_I(t)\right] &\text{for}& t_2 ~\leq~t_1. \end{array}\right.$$ – Qmechanic Jul 19 '19 at 11:10
  • Coleman p. 72, 77. Descriptor state: $$\quad\underbrace{|\psi_0(t)\rangle_S}{\text{evolves with }\hat{H}_0}~=~\underbrace{|\psi_0(t)\rangle_S^{\rm in}}{\text{evolves with }\hat{H}}\text{ for }t\to -\infty.$$ $$\quad|\psi_0(t)\rangle_S~=~|\psi_0(t)\rangle_S^{\rm out}\text{ for }t\to \infty.$$ Coleman, QFT (2019); sections 7.4+13.3-5. Peskin & Schroeder p.86-87. Fetter & Walecka p.61-64. Be aware that P&S and F&W do not write the subindex $I$ of the interaction picture $\hat{U}_I$. – Qmechanic Jul 19 '19 at 14:56
  • Gell-Mann and Low (GML) theorem: Epsilon-like prescription to regularize: $\quad\hat{H}_S(t)~:=~\hat{H}_0+e^{-\epsilon|t|}\hat{V}_S~=~\hat{H}_0+e^{-\epsilon\sigma t}\hat{V}_S$. The interaction term $\hat{V}_S\propto g$ is assumed to not depend explicitly on $t$. The regularized theory has an adiabatic cut-off and is different from the actual theory. Assume $t$, $t_i$ and $t_f$ have same weak sign $\sigma=\pm 1$. $\quad 0~=~\hat{H}_S(t_f)\hat{U}(t_f,t_i)-\hat{U}(t_f,t_i)\hat{H}_S(t_i)+\sigma i\hbar\epsilon g\partial_g\hat{U}(t_f,t_i)$. – Qmechanic Jul 20 '19 at 12:23
  • Molinari shifts the time integration parameter $t^{\prime}=t+\sigma\theta$. $\quad \hat{U}(t_f,t_i)~=~(A)T\exp\left[-\frac{i}{\hbar}\int_{t_i}^{t_f}!dt~\hat{H}S(t)\right]$ $~=~(A)T\exp\left[-\frac{i}{\hbar}\int{t_i+\sigma\theta}^{t_f+\sigma\theta}!dt^{\prime}~{\hat{H}0+e^{\epsilon(\theta-\sigma t^{\prime})}\hat{V}_S}\right]$. $\quad 0~=~\partial{\theta}~=~\sigma(\partial_{t_f}+\partial_{t_i})+\epsilon g\partial_g$ on $\hat{U}(t_f,t_i)$. An aside: $\quad 0~=~\hat{H}_I(t_f)\hat{U}_I(t_f,t_i)-\hat{U}_I(t_f,t_i)\hat{H}_I(t_i)+\sigma i\hbar\epsilon g\partial_g\hat{U}_I(t_f,t_i)$. – Qmechanic Jan 19 '22 at 09:21
  • $\quad\hat{H}0|\Psi_0(t)\rangle_S~=~E_0|\Psi_0(t)\rangle_S$. In the following the main application is with $t=0$. $\quad \hat{U}_0(t)|\Psi{\sigma}(t)\rangle_I~=~|\Psi_{\sigma}(t)\rangle_S~:=~\hat{U}(t,\sigma T)|\Psi_0(\sigma T)\rangle_S$. $\quad |\Psi_{\sigma}(t)\rangle_I~=~\hat{U}I(t,\sigma T)\hat{U}_0(\sigma T)^{-1}|\Psi_0(\sigma T)\rangle_S$ $~=~\hat{U}_I(t,\sigma T)|\Psi_0(0)\rangle_S$ $~=~\hat{U}_I(t,\sigma T)|\Psi_0\rangle{H_0}$ here defined without GML normalization factor. $\quad |\Psi_{\sigma}\rangle_H~=~|\Psi_{\sigma}(0)\rangle_S~=~|\Psi_{\sigma}(0)\rangle_I$. – Qmechanic Jan 19 '22 at 11:10
  • TDSE: $\quad\hat{H}S(t)|\Psi{\sigma}(t)\rangle_S~=~i\hbar d_t|\Psi_{\sigma}(t)\rangle_S$. $\quad\hat{V}I(t)|\Psi{\sigma}(t)\rangle_I~=~i\hbar d_t|\Psi_{\sigma}(t)\rangle_I$. GML $\pm$-states: $\quad\frac{|\Psi_{\sigma}(t)\rangle_S}{{}S\langle\Psi_0(t)|\Psi{\sigma}(t)\rangle_S}~=~\hat{U}0(t)\frac{\hat{U}_I(t,\sigma T)|\Psi_0\rangle{H_0}}{{}{H_0}\langle\Psi_0|\hat{U}_I(t,\sigma T)|\Psi_0\rangle{H_0}}$. Here $T\gg \epsilon^{-1}$ depends on $\epsilon$ and is chosen so large that $e^{-\epsilon T}\ll 1$. GML assumption: $\lim_{\epsilon\searrow 0^+}$ exists for GML $\pm$-states. – Qmechanic May 22 '22 at 12:42
  • $\quad E_{\sigma}(t)~:=~\frac{{}S\langle\Psi_0(t)|\hat{H}_S(t)|\Psi{\sigma}(t)\rangle_S}{{}S\langle\Psi_0(t)|\Psi{\sigma}(t)\rangle_S}$. Then $\lim_{\epsilon\searrow 0^+}E_{\sigma}(t)$ also exists. $\quad (\hat{H}S(t)+\sigma i\hbar\epsilon g\partial_g)|\Psi{\sigma}(t)\rangle_S~=~\hat{U}(t,\sigma T)\hat{H}S(\sigma T)|\Psi_0(\sigma T)\rangle_S$ $~\simeq~\hat{U}(t,\sigma T)\hat{H}_0|\Psi_0(\sigma T)\rangle_S$ $~=~E_0|\Psi{\sigma}(t)\rangle_S$. $\quad i\hbar\sigma\partial_T|\Psi_{\sigma}(t)\rangle_S~=~\hat{U}(t,\sigma T)(\hat{H}_0-\hat{H}_S(\sigma T))|\Psi_0(\sigma T)\rangle_S~\simeq~0$. – Qmechanic Dec 01 '22 at 11:26
  • $\quad E_{\sigma}(t)-E_0~=~\frac{{}S\langle\Psi_0(t)|\hat{H}_S(t)-\hat{H}_0|\Psi{\sigma}(t)\rangle_S}{{}S\langle\Psi_0(t)|\Psi{\sigma}(t)\rangle_S}$ $~=~-\sigma i\hbar\epsilon g\partial_g\ln{}S\langle\Psi_0(t)|\Psi{\sigma}(t)\rangle_S$. (NB: This is different from the LS equation, where energy parameter is the same.) – Qmechanic Nov 26 '23 at 09:19
  • $\quad\left(\hat{H}S(t)-E_0+\sigma i\hbar\epsilon g\partial_g\right)\frac{|\Psi{\sigma}(t)\rangle_S}{{}S\langle\Psi_0(t)|\Psi{\sigma}(t)\rangle_S}$ $~=~-\frac{|\Psi_{\sigma}(t)\rangle_S}{{}S\langle\Psi_0(t)|\Psi{\sigma}(t)\rangle_S}\sigma i\hbar\epsilon g\partial_g\ln{}S\langle\Psi_0(t)|\Psi{\sigma}(t)\rangle_S$ $~=~\frac{|\Psi_{\sigma}(t)\rangle_S}{{}S\langle\Psi_0(t)|\Psi{\sigma}(t)\rangle_S}(E_{\sigma}(t)-E_0)$. $\quad\left(\hat{H}S(t)-E{\sigma}(t)+\sigma i\hbar\epsilon g\partial_g\right)\frac{|\Psi_{\sigma}(t)\rangle_S}{{}S\langle\Psi_0(t)|\Psi{\sigma}(t)\rangle_S}~=~0$. – Qmechanic Nov 26 '23 at 13:36
  • GML conclusion: $\quad\lim_{\epsilon\searrow 0^+}\left(\hat{H}S(t)-E{\sigma}(t)\right)\frac{|\Psi_{\sigma}(t)\rangle_S}{{}S\langle\Psi_0(t)|\Psi{\sigma}(t)\rangle_S}~=~0$ eigenstate; not necessarily ground state; level crossing is not excluded. $\Box$ $\quad\frac{{}H\langle\Psi+|T\left[\hat{A}H(t_A)\ldots\hat{Z}_H(t_Z)\right]|\Psi-\rangle_H}{{}H\langle\Psi+|\Psi_-\rangle_H}$ $~=~\frac{{}{H_0}\langle\Psi_0|T\left[\hat{U}_I(T,t_A)\hat{A}_I(t_A)\ldots\hat{Z}_I(t_Z)\hat{U}_I(t_Z,-T)\right]|\Psi_0\rangle{H_0}}{{}{H_0}\langle\Psi_0|\hat{U}_I(T,-T)|\Psi_0\rangle{H_0}}$. – Qmechanic Nov 28 '23 at 12:43
  • Temporal $T\to T-i\epsilon$ prescription (using Hamiltonian without explicit time-dependence) implements adiabatic cut-off, cf. P&S p. 86-87. $\quad |\Psi_-(t)\rangle_S~=~\hat{U}(t,-T)\hat{U}0(-T)|\Psi_0\rangle{H_0}$ $~\simeq~\hat{U}(t,-T)|n!=!0\rangle_H{}H\langle n!=!0|\hat{U}_0(-T)|\Psi_0\rangle{H_0}$ $~=~e^{-i(t+T)E_{n=0}/\hbar}|n!=!0\rangle_H{}H\langle n!=!0|e^{iTE_0/\hbar}|\Psi_0\rangle{H_0}$ $~\propto~|n!=!0\rangle_H$. – Qmechanic Nov 28 '23 at 22:22
  • Phase space path integral: Heisenberg picture: $\quad {}H\langle q_f,t_f|q_i,t_i\rangle_H~=~{}_H\langle q_f,0|\hat{U}(t_f,t_i)|q_i,0\rangle_H$ $~=~\int{q(t_i)=q_i}^{q(t_f)=q_f}! {\cal D}q~{\cal D}p~\exp\left{\frac{i}{\hbar}\int_{t_i}^{t_f}!dt \left( p\dot{q}-H(q,p,t) \right)\right}$ $~=~{}_H\langle q_f,0|\hat{U}_0(t_f)\hat{U}_I(t_f,t_i)\hat{U}_0(t_i)^{-1}|q_i,0\rangle_H$ $~\neq~{}_I\langle q_f,t_f|\hat{U}_I(t_f,t_i)|q_i,t_i\rangle_I$. – Qmechanic Nov 28 '23 at 22:41
  • $\quad {}H\langle q_f,t_f|\hat{A}_H(t)|q_i,t_i\rangle_H~=~{}_H\langle q_f,0|\hat{U}(t_f,t)\hat{A}_S(t)\hat{U}(t,t_i)|q_i,0\rangle_H.$ Interaction picture: $\quad {}_H\langle q_f,0|\hat{U}_I(t_f,t_i)|q_i,0\rangle_H$ $~=~\int{q(t_i)=q_i}^{q(t_f)=q_f}!{\cal D}q~ {\cal D}p~\exp\left{ \frac{i}{\hbar}\int_{t_i}^{t_f}!dt \left( p\dot{q}-V(q,p,t)\right)\right}.$ $\quad {}_H\langle q_f,0|\hat{U}_I(t_f,t)\hat{A}_I(t)\hat{U}_I(t,t_i)|q_i,0\rangle_H.$ – Qmechanic Nov 28 '23 at 22:49
  • $S$-matrix $\hat{S}~:=~\hat{U}I(T,-T)$ and ${}_H\langle\Psi{\text{out},+}|\Psi_{\text{in},-}\rangle_H~=~{}{H_0}\langle\Psi{\text{out},0}|\hat{S}|\Psi_{\text{in},0}\rangle_{H_0}$; (Weinberg p. 109-114+142; I&Z eqs. (4-57)+(5.5)); – Qmechanic Nov 30 '23 at 09:05
  • Møller operators $\hat{\Omega}{\sigma}(t)~:=~\hat{U}_I(t,\sigma T)$; in-state $|\Psi\text{in}\rangle_{H_0}~=~|\Psi_0\rangle_{H_0}$; out-state ${}{H_0}\langle\Psi\text{out}|~=~{}_{H_0}\langle\Psi_0|$; (The in/out subscript is in practice associated with ket/bra, respectively; not the $\pm,0$ type per se (if we ignore renormalization). The in/out subscript is almost a tautology since it is effectively implied by ket/bra, respectively.) – Qmechanic Dec 01 '23 at 08:29
  • Continuous spectrum: Free/asymptotic states evolves with the free Hamiltonian. TISE: $\quad\hat{H}0|\psi_0(t)\rangle_S~=~E|\psi_0(t)\rangle_S$. They are hence time-independent in the int. pict. They can be viewed as a free Heis. pict. wrt. $\hat{H}_0$: $\quad|\psi_0\rangle{H_0}~:=~\hat{U}_0(t)^{-1}|\psi_0(t)\rangle_S~=:~|\psi_0(t)\rangle_I~=:~|\psi_0\rangle_I$. – Qmechanic Dec 01 '23 at 14:30
  • Lippmann-Schwinger (LS) equation. TISE: $\quad\hat{H}S|\psi{\sigma}(t)\rangle_S~=~(E-\sigma\hat{n}i\epsilon)|\psi_{\sigma}(t)\rangle_S$. $\quad |\psi_{\sigma}(t)\rangle_S~\sim~\exp\left(-\epsilon\frac{\sigma t}{\hbar}\hat{n}\right)|\psi_0(t)\rangle_S~=~\exp\left(-\frac{i}{\hbar}(E-\sigma\hat{n}i\epsilon)t\right)|\psi_0\rangle_{H_0}$ for $t\to\sigma\infty$. Sign convention: $\sigma=\pm$ refers here to future/past (which corresponds to retarded/advanced), respectively. NB: It is often opposite in the literature. – Qmechanic Dec 01 '23 at 19:31
  • Resolvent: $\quad\hat{R}{\sigma}~:=~\frac{1}{E-\hat{H}_0-\sigma\hat{n}i\epsilon}$. $\quad (E-\hat{H}_S-\sigma\hat{n}i\epsilon)\frac{1}{1-\hat{R}{\sigma}\hat{V}S}~=~E-\hat{H}_0-\sigma\hat{n}i\epsilon$. $\quad |\psi{\sigma}(t)\rangle_S~=~\frac{1}{1-\hat{R}{\sigma}\hat{V}_S}|\psi_0(t)\rangle_S$ $~=~\sum{n\in\mathbb{N}0}(\hat{R}{\sigma}\hat{V}S)^n|\psi_0(t)\rangle_S$ $~=~|\psi_0(t)\rangle_S+\hat{R}{\sigma}\hat{V}S|\psi{\sigma}(t)\rangle_S$. $\quad |\psi_{\sigma}\rangle_H~:=~|\psi_{\sigma}(0)\rangle_S$. LS eq. can be converted to – Qmechanic Dec 02 '23 at 12:26
  • other pictures.$\quad |E,\sigma/0\rangle_{H/H_0}~:=~|\psi_{\sigma/0}\rangle_{H/H_0}$. $\quad |E,\sigma\rangle_H-|E,0\rangle_{H_0}~=~\hat{R}{\sigma}\hat{V}_S|E,\sigma\rangle_H$. Wavepacket $\quad |\Psi{\sigma/0}(t)\rangle_S~=~\int_{\mathbb{R}}!dE~g(E) e^{-iEt/\hbar}|E,\sigma/0\rangle_{H/H_0}$. $\quad g(E)~=~{}{H/H_0}\langle E,\sigma/0|\Psi{\sigma/0}(0)\rangle_S$ all 3 assumed the same wavepacket. $\quad |\Psi_{\sigma}(t)\rangle_S -|\Psi_0(t)\rangle_S~=~\int_{\mathbb{R}}!dE~g(E) e^{-iEt/\hbar}\hat{R}_{\sigma}\hat{V}_S|E,\sigma\rangle_H~\to~0$ for $t\to\sigma\infty$ by closing int. contour. – Qmechanic Dec 14 '23 at 12:25
  • On-shell momentum mode Fock space: $\quad{}{H_0}\langle f|i\rangle{H_0}~=~\delta(f,i)$. $S$-matrix: $\quad S_{fi}~=~{}{H_0}\langle f|U_I(T,-T)|i\rangle{H_0}~=~{}{H_0}\langle f|\frac{1}{1-\hat{R}{-}\hat{V}S}|i\rangle{H_0}$. $\quad{}{H_0}\langle f|\hat{R}{-}\hat{V}S|i\rangle{H_0}~=~\frac{1}{E-E_f+in_f\epsilon}~{}{H_0}\langle f|\hat{V}_S|i\rangle{H_0}$. $\quad\int_{-T}^{T}! dt_N\ldots\int_{-T}^{t_{v+1}}! dt_v\ldots\int_{-T}^{t_2}! dt_1$. $\quad e^{-i(\omega_e-i\epsilon)|t_v-t_w|}$. – Qmechanic Dec 16 '23 at 13:47
  • $\quad\int\frac{dk^0}{2\pi i}\frac{1}{(k^0)^2-\omega^2+i\epsilon}e^{ik^0t}$ $~=~\int\frac{dk^0}{2\pi i}\frac{1}{2(\omega-i\epsilon)}\sum_{\pm}\pm\frac{1}{k^0\mp(\omega-i\epsilon)}e^{ik^0t}$ $~=~-\frac{1}{2\omega}e^{-i(\omega-i\epsilon)|t|}$. – Qmechanic Dec 17 '23 at 13:57
  • $i\epsilon$-prescription: Creation operators $\hat{a}^{\dagger}_I(t)=\hat{a}^{\dagger}_Se^{i(\omega-i\epsilon)t}$ is well-defined as out-going starting from very early times $t\to-\infty$. At very late times $t\to\infty$ they are anyway killed by the bra out state. Annihilation operators $\hat{a}_I(t)=\hat{a}_Se^{-i(\omega-i\epsilon)t}$ $\quad e^{i{\rm sgn}(e,v)(\omega_e-i\epsilon)t_v}$. $\quad#(\hat{a}^{\dagger})\geq#(\hat{a})$. Crea./ann. ops are multiplied with $e^{\mp i{\bf k}\cdot{\bf x}}$. – Qmechanic Dec 26 '23 at 19:29
  • Telescopic series: $\quad e^{i\sum_e{\rm sgn}(e,w)(\omega_e-i\epsilon)t_w}(-\frac{i}{\hbar})\int_{-T}^{t_w}! dt_v\exp\left[i{\underbrace{\sum_e\theta(e,v)(\omega_e-i\epsilon)}{=E{wv}/\hbar -in_{wv}\epsilon}-E_i/\hbar}t_v\right]$ $~=~\frac{1}{(E_{wv} -in_{wv}\epsilon)-E_i}\exp\left[i{\underbrace{\sum_e\theta(e,w)(\omega_e-i\epsilon)}{=E{\cdot w}/\hbar -in_{\cdot w}\epsilon}-E_i/\hbar}t_w\right]$. Note that the inertial state $E_i$ (or equivalently, the ann. op. $a$'s at the first vertex $t_1$) is without $i\epsilon$ prescription possibly related to GML theorem. – Qmechanic Dec 28 '23 at 21:03
16

Those things are surely not enough to find the inner product $\langle q|p\rangle$ uniquely. For example, starting with the conventional $Q,P$, you may redefine them by a canonical transformation, for example by $$ Q\to Q'=Q, \quad P\to P'= P + Q^3 $$ Then $P', Q'$ obey all the four conditions in the same way as $P,Q$. They also have eigenstates and $|p'\rangle$ states are something else than $|p\rangle$. In fact, eigenstates with a large eigenvalue $P'$ are close to $Q$ eigenstates because $Q^3$ easily dominates. The inner product – which is nothing else than the wave function of the $P'$ eigenstate written in the $Q$ representation – will end up being different. It will be a complicated solution of the equation for $\psi$ saying that it's a $P+Q^3$ eigenstate.

The conditions you wrote can only tell you that $$\langle q | PQ | p \rangle = \langle q | QP | p \rangle - i\hbar \langle q | p \rangle = (qp - i\hbar )\langle q | p \rangle $$ so they're only enough to say how $Q$ acts on the $p$ eigenstates and vice versa, in this combination. But the inner product itself isn't related to itself in any sense, so it can't be determined.

Let me mention that even if you imposed additional conditions that would say that $P$ and $Q$ are physically what they should be – e.g. that they scale properly under the scaling of $Q,P$ – the inner product would still be undetermined because at least the phase of the $|p\rangle$ and $|q\rangle$ eigenstates is arbitrary. In fact, even the "absolute value part of the" normalization is a matter of conventions that could be modified.

More generally, and I would say that this point is often overlooked, many properties of "wave functions" similar to your inner products are intermediate, convention- and representation-dependent quantities that don't have a direct physical impact (i.e. direct link with observable quantities). It's really the properties of observables such as the four conditions that you described that may be considered objective facts.

Luboš Motl
  • 179,018
  • 1
    I don't understand then what is the extra condition required in order to determine $<p|q>$. Is it that $p$ generates position-translations? – QuantumEyedea Dec 08 '17 at 06:23
  • I obviously used all conditions. Yes, the commutator between X and P is what says that P generates translations of X. I have used that condition as well so I don't understand how a person who has read my answer could "then" misunderstand why the condition is needed to determine the overlap. – Luboš Motl Dec 23 '17 at 13:25
  • 1
    Your first sentence says that the four assumptions given in OP's post are not enough to uniquely determine $<p|q>$. What I meant by my question is what is the extra information you need to get $<p|q> = \frac{e^{i\phi}}{\sqrt{2\pi\hbar}} e^{ipx}$, up to some phase? In your post you mention something about $Q$ and $P$ must scale in a certain way. – QuantumEyedea Dec 24 '17 at 05:20
  • The extra information you need is the commutator of P,Q and I think that my answer explains where this information is used and why. If you don't believe me that two observables P,Q with a general commutator don't have to have plane-wave eigenstates relatively to each other, I can easily find as many counterexamples as you want. – Luboš Motl Dec 26 '17 at 17:59