For the vector representation of the Lorentz group (actually the algebra), the $J^1$ generator is
$$J_1 = i \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \tag1$$
while what I get applying trying to work it out from the $(\frac{1}{2}, \frac{1}{2})$ representation is
$$J_1 = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 \\ 1/2 & 0 & 0 & 1/2 \\ 0 & 1/2 & 1/2 & 0 \end{pmatrix}\tag2$$
Obviously there is a mistake in my calculation, the question is where and how to rectify it. Here is how I arrived at the above calculation.
To construct the irreducible representations of the homogeneous Lorentz group, starting with the $J^{\mu\nu}$ generators, one defines $\mathbf{J}=\{J^1,J^2,J^3\}$ as $J^1 = J^{23}$ and so on by cyclic permutations and $\mathbf{K} = \{K^1, K^2, K^3\}$ as $K^i = J^{0i}$. Then by defining
$$ \mathbf{A}=\frac{1}{2}(\mathbf{J}+i\mathbf{K}), \mathbf{B}=\frac{1}{2}(\mathbf{J}-i\mathbf{K})\tag3$$
one gets two independent $SU(2)$ algebras, since
$$[A_i,A_j]=i\epsilon_{ijk}A_k,\tag4$$
$$[B_i, B_j] = i\epsilon_{ijk} B_k,\tag5$$
$$[A_i, B_j]=0.\tag6$$
Thus $\mathbf{A}$ can be represented by the usual angular momentum matrices $\mathbf{J}^{(A)}_{a,a^\prime}$, where $A$ is the maximum value (integer or half integer) and $a,a^\prime = -A,...,+A$. Similarly for $\mathbf{B}$. Combining the two for the Lorentz group, in term of indices we have
$$(\mathbf{A})_{ab,a^\prime b^\prime} = \mathbf{J}^{(A)}_{aa^\prime} \delta_{bb^\prime}\tag7$$
$$(\mathbf{B})_{ab,a^\prime b^\prime} = \delta_{aa^\prime} \mathbf{J}^{(B)}_{bb^\prime}\tag8$$
Now here starts my trouble. As I understand it, in matrix form these two are
$$\mathbf{A} = \mathbf{J}^{(A)} \otimes \mathbf{1}_{2b+1}\tag9$$
and
$$\mathbf{B} = \mathbf{1}_{2a+1} \otimes \mathbf{J}^{(B)}.\tag{10}$$
$\mathbf{1}$ stands of course for the unit matrix of the appropriate dimensions and $\otimes$ is the matrix direct product.
Using these equations for $A=\frac{1}{2}=B$, the $J$s are $\frac{1}{2}\sigma^i$, half the Pauli matrices and what I get is
$$A_1 =\frac{1}{2}\sigma_1 \otimes \mathbf{1}_2 = \begin{pmatrix} 0 & 1/2 \\ 1/2 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \tag{11}$$
$$= \begin{pmatrix} 0 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \frac{1}{2} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ \frac{1}{2} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & 0 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1/2 \\ 1/2 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \end{pmatrix}\tag{12}$$
and similarly
$$B_1 = \mathbf{1}_2 \otimes \frac{1}{2}\sigma_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1/2 \\ 1/2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1/2 & 0 & 0 \\ 1/2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/2 \\ 0 & 0 & 1/2 & 0 \end{pmatrix}\tag{13}$$
From the definitions of $\mathbf{A}$ and $\mathbf{B}$, eq. (3), $\mathbf{J} = \mathbf{A} + \mathbf{B}$, therefore $J_1 = A_1 + B_1 $ and
$$J_1 = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 \\ 1/2 & 0 & 0 & 1/2 \\ 0 & 1/2 & 1/2 & 0 \end{pmatrix}\tag{14}$$
which hardly looks like the $J_1$ for the vector representation.
Somewhere along the line there is a mistake, yet I fail to see it. Any help and advise will be greatly appreciated.