The coherent state is defined such that $a|\alpha\rangle =\alpha|\alpha\rangle $.
We can calculate the uncertainty using
$$\sqrt{\langle x^2\rangle-\langle x\rangle ^2}\sqrt{\langle p^2\rangle-\langle p\rangle ^2}$$
Substituting $$x=\frac{1}{\sqrt{2}}(a+a^\dagger)$$ and $$p=i\frac{1}{\sqrt{2}}(a-a^\dagger)$$ with $\omega=\hbar=m=1$ we find: $$x^2=\frac 1 2 (a+a^\dagger)(a+a^\dagger)=\frac 1 2 (aa+aa^\dagger+a^\dagger a+a^\dagger a^\dagger)$$
$$p^2=-\frac 1 2 (a-a^\dagger)(a-a^\dagger)=\frac 1 2 (-aa+aa^\dagger+a^\dagger a-a^\dagger a^\dagger)$$
$$\langle \alpha| x| \alpha\rangle =\frac 1 {\sqrt 2}(\alpha+\alpha^*)=\sqrt 2R(\alpha)$$ $$\langle \alpha| x| \alpha\rangle^2 =2R^2(\alpha)$$ $$\langle \alpha| x^2| \alpha\rangle =(R^2(\alpha)-I^2(\alpha)+|\alpha|^2)$$
$$\langle \alpha| p| \alpha\rangle =\frac i {\sqrt 2}(\alpha-\alpha^*)=-\sqrt 2 I(\alpha)$$ $$\langle \alpha| p| \alpha\rangle^2 = 2 I^2(\alpha)$$ $$\langle \alpha| p^2|\alpha\rangle =(I^2(\alpha)-R^2(\alpha)+|\alpha|^2)$$
$$\sqrt{\langle x^2\rangle-\langle x\rangle^2}\sqrt{\langle p^2\rangle-\langle p\rangle^2}=0\ne\frac 1 2$$ Heisenberg's uncertainty principle states that this should be more than a half.
Where is the problem with this derivation?