According to Dirac equation we can write, \begin{equation} \left(i\gamma^\mu( \partial_\mu +ie A_\mu)- m \right)\psi(x,t) = 0 \end{equation} We seek an equation where $e\rightarrow -e $ and which relates to the new wave functions to $\psi(x,t)$ . Now taking the complex conjugate of this equation we get
\begin{equation} \left[-i(\gamma^\mu)^* \partial_\mu -e(\gamma^\mu)^* A_\mu - m \right] \psi^*(x,t) = 0 \end{equation} If we can identify a matrix U such that \begin{equation} \tilde{U} (\gamma^\mu)^* ( \tilde{U} )^{-1} = -\gamma^\mu \end{equation} where $ 1 =U^{-1} U$.
I want to know that, why and how did we do the last two equation. More precisely, I want to know more details and significance of the last two equations.