BACKGROUND.
So my understanding is this: the $3\times3$ rep of $SO(3)$ are matrices $R$ that rotate a vector $x$, for example:
$$ x \rightarrow Rx = \left(\begin{matrix} 1&0&0 \\ 0&C&S \\ 0&-S&C \end{matrix}\right) \left(\begin{matrix}{x\\y\\z}\end{matrix}\right) ,$$
with $C=\cos\theta$ and $S=\sin\theta$. Instead of acting on vectors $x$, $R$ can act on a 2-rank $3\times 3 $ tensor $t$:
$$ t\rightarrow RtR^{-1},~~ t=\left(\begin{matrix} a&b&c \\ d&e&f \\ g&h&i \end{matrix}\right) .$$
Or we can go from a $3\times3$ rep to a $9\times9$ and $9\times1$ rep:
$$ T \rightarrow (R\otimes R) T$$
with
$$~~(R\otimes R) = \left(\begin{matrix} 1&0&0&0&0&0&0&0&0\\ 0&C&S&0&0&0&0&0&0\\ 0&-S&C&0&0&0&0&0&0\\ 0&0&0&C&0&0&S&0&0\\ 0&0&0&0&C^2&C S&0&C S&S^2\\ 0&0&0&0&-C S&C^2&0&-S^2&C S\\ 0&0&0&-S&0&0&C&0&0\\ 0&0&0&0&-C S&-S^2&0&C^2&C S\\ 0&0&0&0&S^2&-C S&0&-C S&C^2\\ \end{matrix}\right) ,~~T=\left(\begin{matrix} a\\b\\c\\d\\e\\f\\g\\h\\i \end{matrix}\right). $$
Next, this 9 rep decomposes into $1\oplus 3\oplus 5$ so we should be able to block-diagonalize it into 1×1, 3×3 and 5×5 blocks. To do this, Zee looks at the objects being transformed, and groups them into diagonal, asymmetric and traceless symmetric:
$$ \left(\begin{matrix} 1& 0& 0\\ 0& 1& 0\\ 0& 0& 1 \end{matrix}\right)\\ \left(\begin{matrix} 0& 0& 0\\ 0& 0& 1\\ 0& -1& 0 \end{matrix}\right) \left(\begin{matrix} 0& 0& -1\\ 0& 0& 0\\ 1& 0& 0 \end{matrix}\right) \left(\begin{matrix} 0& 1& 0\\-1& 0& 0\\ 0& 0& 0 \end{matrix}\right)\\ \left(\begin{matrix} 0& 0& 0\\ 0& 0& 1\\ 0& 1& 0 \end{matrix}\right) \left(\begin{matrix} 0& 0& 1\\ 0& 0& 0\\ 1& 0& 0 \end{matrix}\right) \left(\begin{matrix} 0& 1& 0\\ 1& 0& 0\\ 0& 0& 0 \end{matrix}\right) \left(\begin{matrix} 1& 0& 0\\ 0& 1& 0\\ 0& 0& -2 \end{matrix}\right) \left(\begin{matrix} 1& 0& 0\\ 0& -1& 0\\ 0& 0& 0 \end{matrix}\right) $$
The same tensors in the 9×1 form:
$$ \left(\begin{matrix} 1\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 1 \end{matrix}\right) ~~~~~ \left(\begin{matrix} 0\\ 0\\ 0\\ 0\\ 0\\ 1\\ 0\\ -1\\ 0 \end{matrix}\right) \left(\begin{matrix} 0\\ 0\\ -1\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0 \end{matrix}\right) \left(\begin{matrix} 0\\ 1\\ 0\\-1\\ 0\\ 0\\ 0\\ 0\\ 0 \end{matrix}\right) ~~~~~ \left(\begin{matrix} 0\\ 0\\ 0\\ 0\\ 0\\ 1\\ 0\\ 1\\ 0 \end{matrix}\right) \left(\begin{matrix} 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0 \end{matrix}\right) \left(\begin{matrix} 0\\ 1\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0 \end{matrix}\right) \left(\begin{matrix} 1\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ -2 \end{matrix}\right) \left(\begin{matrix} 1\\ 0\\ 0\\ 0\\ -1\\ 0\\ 0\\ 0\\ 0 \end{matrix}\right) $$
The vectors above are mutually orthogonal. They provide a complete basis. Normalize them, and make them columns in a matrix $S$. Then I expected the following to be block diagonal (1,3,5):
$$ S^{-1}(R\otimes R)S $$
However, I get a 2-block and a 7-block.
QUESTION:
1) Is something wrong in my reasoning? (I'm newish to group theory.)
2) Is there a standard form for the 5×5 rep? Even if I correctly got a 5-block above, it might be some scrambled, non-standard version.