My guess it should look something like this:
$ c_\sigma = (\left|0\right>\left<\uparrow\right|+\left|\downarrow\right>\left<\downarrow\uparrow\right|)\delta_{\sigma,\uparrow}+(\left|0\right>\left<\downarrow\right|+\left|\uparrow\right>\left<\downarrow\uparrow\right|)\delta_{\sigma,\downarrow}$
where $\delta$ is a Kronecker delta and states $\left|0\right>,\left|\downarrow\right>,\left|\uparrow\right>,\left|\downarrow\uparrow\right>$ are orthonormal.
Now it behaves like annihilation operator
$c_{\downarrow}\left|0\right>=\left|0\right>, c_{\uparrow}\left|0\right>=\left|0\right>$
$c_{\downarrow}\left|\downarrow\right>=\left|0\right>, c_{\uparrow}\left|\downarrow\right>=\left|0\right>$
$c_{\downarrow}\left|\downarrow\uparrow\right>=\left|\uparrow\right>, c_{\uparrow}\left|\downarrow\uparrow\right>=\left|\downarrow\right>$
but anticommutator for example $[c_{\uparrow},c_{\downarrow}]_+$ isn't zero.
Is it possible to define it like that (in terms of basis states)?