I try to understand constructing of Hamiltonian mechanics with constraints. I decided to start with the simple case: free relativistic particle. I've constructed hamiltonian with constraint:
$$S=-m\int d\tau \sqrt{\dot x_{\nu}\dot x^{\nu}}.$$
Here $\phi=p_{\mu}p^{\mu}-m^2=0$ $-$ first class constraint.
Then $$H=H_{0}+\lambda \phi=\lambda \phi.$$
So, I want to show that I can obtain from this Hamiltonian the same equation of motion, as obtained from Lagrangian.
But the problem is that I'm not sure what to do with $\lambda=\lambda(q,p)$. I tried the following thing:
$$\dot x_{\mu}=\{x_{\mu},\lambda \phi\}=\{x_{\mu},\lambda p^2\}-m^2\{x_{\mu},\lambda\}=\lambda\{x_{\mu},p^2\}+p^2\{x_{\mu},\lambda\}-m^2\{x_{\mu},\lambda\}$$$$=2\lambda \eta_{\mu b} p^b+p^2\{x_{\mu},\lambda\}-m^2\{x_{\mu},\lambda\}=2\lambda \eta_{\mu b} p^b+p^2\frac{\partial \lambda}{\partial p^{\mu}}-m^2\frac{\partial \lambda}{\partial p^{\mu}},$$
$$\dot \lambda=\{\lambda, \lambda \phi \}=\{\lambda,\lambda p^2\}-m^2\{\lambda,\lambda\}=\lambda\{\lambda,p^2\}+p^2\{\lambda,p^2\}=2\lambda\eta_{ak}p^{a}\frac{\partial \lambda}{\partial x^{k}},$$
$$\dot p_{\mu}=\{p_{\mu},\lambda p^{2}-m^2\lambda \}=p^{2}\{p_{\mu},\lambda\}-m^2\{p_{\mu},\lambda\}=-p^{2}\frac{\partial \lambda}{\partial x^{\mu}}+m^2\frac{\partial \lambda}{\partial x^{\mu}}.$$
If we recall that $p^2-m^2=0$, then we get from the third equation: $\dot p=0$, and from the first: $$\dot x_{\mu}=2\lambda\eta_{ak}p^{a}.$$
So we have
$\dot x_{\mu}=2\lambda\eta_{\mu b}p^{b}.$
$\dot \lambda=2\lambda\eta_{ak}p^{a}\frac{\partial \lambda}{\partial x^{k}}.$
$\dot p=0.$
But I don't know what to do next. Can you help me?