In eq. (22.20) on p. 135 in Srednicki he defines the functional integral
$$Z(J) = \int\mathcal{D}\phi\,\exp\Big[\mathrm{i}\big(S+\int\mathrm{d^4}y \,J_a\phi_a\big)\Big], \tag{A}$$
where $S$ and $J_a$ are the action and sources respectively (sum over $a$). What I don't get is that when he in eq. (22.21) considers a small variation $\delta Z$ he seem to get the variation of the action inside an integral (I get it without the integral) as follows:
$$0=\delta Z(J) = \mathrm{i}Z(J) \times \Bigg[\int \mathrm{d^4}x\Big(\,\frac{\delta S}{\delta \phi_a(x)}+J_a(x)\Big)\delta \phi_a(x)\Bigg].\tag{B}$$
My attempt:
$$0=\delta Z(J) = \frac{\delta Z}{\delta\phi_b(x)}\delta\phi_b(x)\\[10mm]=\int \mathcal{D}\phi\,\delta\phi_b(x)\Bigg[\frac{\delta}{\delta\phi_b(x)}\mathrm{e}^{\mathrm{i}(S+\int\mathrm{d^4}y\,J_a(y)\phi_a(y))}\Bigg].\tag{C}$$
The box becomes:
$$\Bigg[\frac{\delta}{\delta\phi_b(x)}\mathrm{e}^{\mathrm{i}(S+\int\mathrm{d^4}y\,J_a(y)\phi_a(y))}\Bigg] = \frac{\delta}{\delta\phi_a(y)}\mathrm{e}^{\mathrm{i}(S+\int\mathrm{d^4}y\,J_a(y)\phi_a(y))}\frac{\delta\phi_a(y)}{\delta\phi_b(x)}\\[10mm]=\delta_{ab}\delta^4(x-y)\mathrm{e}^{\mathrm{i}(S+\int\mathrm{d^4}y\,J_a(y)\phi_a(y))}\times\mathrm{i}\underbrace{\frac{\delta}{\delta\phi_a(y)}\Big(S+\int\mathrm{d^4}y\,J_a(y)\phi_a(y)\Big)}_{\Lambda}. \tag{D}$$
Lambda becomes (?) $$\Lambda = \frac{\delta S}{\delta \phi_a(y)}+\int\mathrm{d^4}y J_a(y). \tag{E}$$
What I'm I doing wrong here?