I) Firstly, we are talking about the direct or Cartesian product $SU(2)\times SU(2)$ of groups, not the tensor product$^1$ $SU(2)\otimes SU(2)$ of groups.
II) Secondly, $SU(2)\times SU(2)$ is not isomorphic to the Lorentz group $SO(3,1)$ but rather to a compact cousin
$$[SU(2)\times SU(2)]/\mathbb{Z}_2~\cong~ SO(4).$$
In particular, a $(\frac{1}{2},\frac{1}{2})$ irrep under $su(2)\oplus su(2)$ corresponds to a 4-dimensional fundamental vector representation under $o(4)$.
III) Thirdly, OP might be thinking of the complexified Lorentz group $SO(3,1;\mathbb{C})$, which has double cover $SL(2,\mathbb{C})\times SL(2,\mathbb{C})$,
$$[SL(2,\mathbb{C})\times SL(2,\mathbb{C})]/\mathbb{Z}_2~\cong~ SO(3,1;\mathbb{C}).$$
cf. this Phys.SE post. In particular, a $(\frac{1}{2},\frac{1}{2})$ irrep under $sl(2,\mathbb{C})\oplus sl(2,\mathbb{C})$ corresponds to a 4-dimensional fundamental vector representation under $o(3,1;\mathbb{C})$.
--
$^1$ Note that there exist various Abelian and non-Abelian tensor product constructions for groups. E.g. for the Abelian group $(\mathbb{R}^n,+)$, the tensor product is $\mathbb{R}^n\otimes\mathbb{R}^m\cong \mathbb{R}^{nm}$, while the Cartesian product is $\mathbb{R}^n\times\mathbb{R}^m\cong \mathbb{R}^{n+m}$.