You can also approach a proof of a more general relation using the generalized Dobinski formula:
f(ϕ.(x))=e−xexp(a.x)=exp(−(1−a.)x),
where (ϕ.(x))n=ϕn(x) is the nth Bell polynomial with Bn=ϕn(1) and (a.)n=an=f(n)=f(x)|x=n.
Then ∞∑k=0ϕk(x)tk=11−ϕ.(x)t=e−x∞∑n=011−ntxnn!
=\sum_{n=0}^\infty \frac{x^n}{n!}\sum_{j=0}^n(-1)^{n-j}\binom{n}{j}\frac{1}{1-jt}.
And, the last finite difference expression is the partial fraction expansion of n!\prod_{j=1}^n \frac{t}{1-jt}, so
\sum_{k=0}^\infty\phi_k(x) t^k=1+\sum_{n=1}^\infty x^n \prod_{j=1}^n \frac{t}{1-jt},
which reduces to the illustrated formula when x=1.
Other proofs, including those alluded to in other answers, can be found in W. Lang's notes.
The generalized Dobinski relation is a consequence of
f(\phi.(:xD:))x^n=f(xD)x^n=f(n)x^n=a_n x^n=(a.x)^n,
where D=d/dx and (:xD:)^k=x^kD^k by definition, so
f(\phi.(:xD:))e^x=e^xf(\phi.(x))=f(xD)e^x=e^{a.x}.
The umbral compositional inverse of the Bell / Touchard polynomial \phi_n(x) is the falling factorial / Pochhammer symbol (s)_n=s!/(s-n)!, i.e., \phi_n((s).)=s^n and (\phi(x).)_n=x^n, so a dual equation shadows that of the ordinary generating function above (for t \leq0 and s\geq 0):
\sum_{k=0}^\infty\phi_k((s)_.) t^k=\sum_{k=0}^\infty s^k t^k=\frac{1}{1-st}
=\sum_{n=0}^\infty(-1)^n \binom{s}{n}\sum_{j=0}^n(-1)^j\binom{n}{j}\frac{1}{1-jt}
=1+\sum_{n=1}^\infty (s)_n \prod_{j=1}^n \frac{t}{1-jt}.