Let $(N \subset M)$ be a finite index irreducible subfactor, $P=P(N \subset M)$ its planar algebra.
Notation: For $a,b \in P_{2,+}$ positive operators, then $\langle a,b \rangle$ is the biprojection they generate.
Property (F): $\forall a , b \in P_{2,+}$ min. proj., $\exists c \in P_{2,+}$ min. proj. such that $\langle c,a \rangle , \langle b,c \rangle \ge \langle a,b \rangle$
Problem: Is (F) true in general?
Remark: it's true if $P_{2,+}$ ia abelian or if $(N \subset M)$ is depth $2$ (both by Frobenius reciprocity).