17

Is $GL_n(\mathbb{Q}_p)=GL_n(\mathbb{Z}_p)GL_n(\mathbb{Q})$? Generally, let $R$ be a discrete valuation ring and $K$ its fraction field. Let $\widehat{R}$ be the completion and $\widehat{K}$ the fraction field of $\widehat{R}$. Is $GL_n(\widehat{K})=GL_n(\widehat{R})GL_n(K)$? We know it is true when $n=1$.

wuzx
  • 517
  • 2
  • 9

1 Answers1

26

Yes: more generally for every topological group $G$, dense subgroup $H$ and open subgroup $U$, we have $G=UH$.

This applies when $F$ is a valued field, $A$ an open subring (typically, elements of non-negative valuation), and $K$ any dense subfield of $F$, $G=\mathrm{GL}_n(F)$, $H=\mathrm{GL}_n(K)$, $U=\mathrm{GL}_n(A)$.

YCor
  • 60,149