By rescaling, without loss of generality (wlog) \|x\|_\infty=1.
Let X be a random variable such that P(X=|x_i|)=1/n for x=(x_1,\dots,x_n) and all i=1,\dots,n. Then
\begin{equation*}
\|x\|_r^r=nm_r,\quad m_r:=EX^r,
\end{equation*}
for r\ge1. Let us find the best possible bounds on m_p in terms of m_0=1,m_1,m_2; these bounds can then be easily translated back in the terms of \|x\|_r. Wlog
\begin{equation*}
0<m_1<\sqrt{m_2}<\sqrt{m_1}<1. \tag{1}
\end{equation*}
Everywhere here 0\le t,u\le1.
Lemma 1. d_1(t):=(p-1) u^{p-2}t^2+(2-p) u^{p-1}t-t^p\le0, and d_1(t)=0 if t\in\{0,u\}.
Lemma 2. d_2(t):=c t^2+b t+a-t^p\ge0, and d_2(t)=0 if t\in\{u,1\}, where
\begin{align*}
a&:=\frac{(p-2) u^{p+1}-(p-1) u^p+u^2}{(1-u)^2}, \\
b&:=\frac{p u^{p-1}-(p-2) u^{p+1}-2 u}{(1-u)^2}, \\
c&:=\frac{-p u^{p-1}+(p-1) u^p+1}{(1-u)^2}.
\end{align*}
These lemmas will be proved at the end of this answer.
It follows from Lemma 1 that
\begin{equation*}
0\ge Ed_1(X)=(p-1) u^{p-2}m_2+(2-p) u^{p-1}m_1-m_p, \tag{2}
\end{equation*}
and this inequality turns into the equality if u=u_*:=m_2/m_1 and P(X=u_*)=m_1^2/m_2=1-P(X=0); in view of (1), such a r.v. X exists, and u_*\in(0,1). So, substituting u=u_* into (2), we have the best possible lower bound on m_p:
\begin{equation}
m_p\ge m_1(m_2/m_1)^{p-1}.
\end{equation}
Similarly, it
It follows from Lemma 2 that
\begin{equation*}
0\le Ed_2(X)=c m_2+b m_1+a-m_p, \tag{3}
\end{equation*}
and this inequality turns into the equality if u=u_{**}:=(m_1-m_2)/(1-m_1) and P(X=u_{**})=(1-m_1)/(1-u_{**})=1-P(X=1); in view of (1), such a r.v. X exists, and u_{**}\in(0,1). So, substituting u=u_{**} into (3), we have the best possible upper bound on m_p:
\begin{equation}
m_p\le \frac{m_2-m_1^2+(1-m_1)^2 (\frac{m_1-m_2}{1-m_1})^p}{1+m_2-2 m_1}.
\end{equation}
It remains to prove Lemmas 1 and 2.
Proof of Lemma 1. We have d_1(0)=0=d_1(u)=d'_1(u). Also, d''_1(t)=(p-1) (2 u^{p-2} - p t^{p-2}) switches in sign from + to - (only once) as t increases from 0 to 1, and the switch point is <u. Now Lemma 1 follows. \Box
Proof of Lemma 2. We have
\begin{align*}
d''_2(t)(1-u)^2u &=2 \left((p-1) u^{p+1}-p u^p+u\right)-(p-1) p (1-u)^2 u t^{p-2} \\
&>2 \left((p-1) u^{p+1}-p u^p+u\right)-(p-1) p (1-u)^2 u^{p-1} \\
&=:f(u)
\end{align*}
if 0<t<u.
We have
\begin{equation}
f''(u)=(p-2) (p-1) p (1-u) u^{p-3} ((p+1)u-(p-1)),
\end{equation}
so that f''(u) switches in sign from - to + (only once) as u increases from 0 to 1. Also, f(0)=f(1)=f'(1)=0. So, f>0 and hence d''_2(t)>0 if 0<t<u. Also, clearly d_2 has at most one inflection point. Also, d_2(1)=0=d_2(u)=d'_2(u). Now Lemma 2 follows. \Box
Remark 1. The lower bound on \|x\|_p or, equivalently, on m_p, is an easy corollary of Hölder's inequality or, equivalently, of the log-convexity of \|x\|_r in r. However, in this case, it seemed to make sense to use a similar approach to both the lower bound and (the much more difficult) upper bound.
Remark 2. The bounds in terms of m_r seem more natural than those in terms of \|x\|_r (even though these two kinds of bounds are very easy to translate into each other). One reason for this preference is that restrictions (1) when translated into the \|x\|_r terms will contain n. Moreover, the restrictions
m_1<\sqrt{m_2} and \sqrt{m_1}<1 in (1), when translated into the \|x\|_r terms, become rather restrictions on n: n>\|x\|_1^2/\|x\|_2^2 and n>\|x\|_1, respectively. In these remarks, it is still assumed that \|x\|_\infty=1.
Remark 3. The lower bound on m_p, when translated into the \|x\|_r terms, is free of n:
\begin{equation}
\|x\|_p^p\ge\|x\|_2^{2p-2}/\|x\|_1^{p-2}.
\end{equation}
However, if one insists on a free of n upper bound on \|x\|_p in terms of p, \|x\|_1, and \|x\|_2 only, then the bound cannot be substantially better than the trivial upper bound given by the inequality \|x\|_p^p\le\|x\|_2^2, as in the first display in the OP. Indeed, we have
Proposition 1. Suppose that
\begin{equation}
\|x\|_p\le F(\|x\|_1,\|x\|_2^2)
\end{equation}
for all vectors x,
where the function F=F_p is continuous (and does not depend on n). Then
\begin{equation}
F(A,B)\ge B^{1/p}
\end{equation}
for all natural B and all real A>B.
The restriction A>B corresponds to the restriction \sqrt{m_2}<\sqrt{m_1} in (1).
Proof of Proposition 1. Take indeed any natural B and any real A>B. For natural n>A, let y=(y_1,\dots,y_n), where y_1=\dots=y_B=1 and y_{B+1}=\dots=y_n=\frac{A-B}{n-B}[\in(0,1)]. Then \|y\|_1=A, \|y\|_2^2\to B, \|y\|_p^p\to B, and hence
\begin{equation}
B^{1/p}\leftarrow\|y\|_p\le F(\|y\|_1,\|y\|_2^2)\to F(A,B)
\end{equation}
as n\to\infty. \Box
In particular, it follows from Proposition 1 that the conjecture
\|x\|_p\le C_p\|x\|_2\Big(\frac{\|x\|_\infty}{\|x\|_1}\Big)^r
with r=(p-2)/(2p-2),
proposed by the OP, is false in general. This can also be seen directly by letting x_i=1 for all i=1,\dots,n.