0

In order to see what happens when taking the functional equation in this form: $$\xi(s) := \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s) $$ $$\xi(s) = \xi(1 - s)$$ $$\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)\tag{$\ast$}$$

and applying it to this Dirichlet generating function (in two variables):

$$\frac{\zeta(s)\ \zeta(c)}{\zeta(s+c-1)}\tag{$\ast \ast$}$$

associated with the GCD matrix that has the property stated more clearly by GH from MO here:

$$\Lambda(m)=\lim_{s\to 1+}\zeta(s)\sum_{d\mid m}\frac{\mu(d)}{d^{s-1}}=\lim_{s\to 1+}\;\sum_{n=1}^\infty\frac{1}{n^s}\left(\sum_{d\mid\gcd(n,m)}d\mu(d)\right),\qquad m>1.$$

Applying $(\ast)$ to $( \ast \ast )$ we get:

$$\frac{\pi^{-s/2}\ \pi^{-c/2}}{\pi^{-s/2-c/2+1/2}}\ \frac{\Gamma\left(\frac{s}{2}\right)\Gamma\left(\frac{c}{2}\right)}{\Gamma\left(\frac{s}{2}+\frac{c}{2}-\frac{1}{2}\right)}\ \frac{\zeta(s)\ \zeta(c)}{\zeta(s+c-1)}=\frac{\pi^{-(1-s)/2}\ \pi^{-(1-c)/2}}{\pi^{-((1-s)+(1-c)-(1-1))/2}}\ \frac{\Gamma\left(\frac{1-s}{2}\right)\ \Gamma\left(\frac{1-c}{2}\right)}{\Gamma\left(\frac{1-s}{2}+\frac{1-c}{2}-\frac{1-1}{2}\right)}\ \frac{\zeta(1-s)\ \zeta(1-c)}{\zeta((1-s)+(1-c)-(1-1))}$$

Moving the Riemann zeta functions to the left hand side, we get:

$$\frac{\zeta(s)\ \zeta(c)}{\zeta(s+c-1)}\ \frac{\zeta((1-s)+(1-c)-(1-1))}{\zeta(1-s)\ \zeta(1-c)}=\frac{\pi^{-(1-s)/2}\ \pi^{-(1-c)/2}}{\pi^{-((1-s)+(1-c)-(1-1))/2}}\frac{\pi^{-s/2-c/2+1/2}}{\pi^{-s/2}\ \pi^{-c/2}}\ \frac{\Gamma\left(\frac{1-s}{2}\right)\ \Gamma\left(\frac{1-c}{2}\right)}{\Gamma\left(\frac{1-s}{2}+\frac{1-c}{2}-\frac{1-1}{2}\right)}\ \frac{\Gamma\left(\frac{s}{2}+\frac{c}{2}-\frac{1}{2}\right)}{\Gamma\left(\frac{s}{2}\right)\Gamma\left(\frac{c}{2}\right)} \tag{$\ast \ast \ast$}$$

If replace the variable $s$ in: $$\frac{\zeta(s)\ \zeta(c)}{\zeta(s+c-1)}\ \frac{\zeta((1-s)+(1-c)-(1-1))}{\zeta(1-s)\ \zeta(1-c)}$$ with $s=\frac{1}{2}+it$, and let $c=1+\frac{1}{2}$, so that we get:

$$\frac{\zeta(\frac{1}{2}+it)\ \zeta(1+\frac{1}{2})}{\zeta(\frac{1}{2}+it+1+\frac{1}{2}-1)}\ \frac{\zeta((1-(\frac{1}{2}+it))+(1-(1+\frac{1}{2}))-(1-1))}{\zeta(1-(\frac{1}{2}+it))\ \zeta(1-(1+\frac{1}{2}))}$$

Plotting the negated real part:

$$-\frac{\zeta \left(\frac{3}{2}\right)}{\zeta \left(-\frac{1}{2}\right)}\Re\left(\frac{\zeta \left(\frac{1}{2}+i t\right) \zeta (-i t)}{\zeta \left(\frac{1}{2}-i t\right) \zeta (1+i t)}\right) \approx \sqrt{8 \pi t}$$

we observe that the function is close to $\sqrt{8 \pi t}$ as $t \rightarrow \infty$.

The constant: $-\frac{\zeta \left(\frac{3}{2}\right)}{\zeta \left(-\frac{1}{2}\right)}=$N[-Zeta[3/2]/Zeta[-1/2], 40]=12.56637061435917295385... has something to do with quasicrystals according the OEIS.

Mathematica:

Plot[-Re[(Zeta[3/2]*Zeta[1/2 + I*t]*Zeta[(-I)*t])/(Zeta[-(1/2)]*
  Zeta[1/2 - I*t]*Zeta[1 + I*t])], {t, 0, 60}]

Plot[Sqrt[8Pit], {t, 0, 60}]

Plot in Wolfram Alpha

The proof of this asymptotic should follow somehow from asymptotic properties of the Beta function in the functional equation, which we started with.

What I am more interested in is the overall approach. Is it worth expressing the Lowell Schoenfeld upper bound:

$|\psi(x)-x|\le\frac{\sqrt x\,\ln^2 x}{8\pi}$

in this way to make progress on the RH? Or is there some obvious drawback? The philosophy is similar to this question, where the goal was to use the expansion of the Chebyshev psi function in order to relate it to square roots.

Notice that the logarithm part is: $$\Re\left(\frac{\zeta '\left(\frac{1}{2}+i t\right)}{\zeta \left(i t+\frac{1}{2}\right)}\right)^2 \approx \left(\frac{1}{2} \log \left(\frac{t}{2 \pi }\right)\right)^2$$

by series expansion of the derivative of Riemann Siegel Theta function. And:

$$\lim_{c\to 1} \, \left(\frac{\zeta (c) \zeta (s)}{\zeta (c+s-1)}-\zeta (c)\right)=-\frac{\zeta '(s)}{\zeta (s)}$$

Plot of:

$$f(t)=-\frac{\zeta \left(\frac{3}{2}\right)}{\zeta \left(-\frac{1}{2}\right)}\Re\left(\frac{\zeta \left(\frac{1}{2}+i t\right) \zeta (-i t)}{\zeta \left(\frac{1}{2}-i t\right) \zeta (1+i t)}\right)\Re\left(\frac{\zeta '\left(\frac{1}{2}+i t\right)}{\zeta \left(i t+\frac{1}{2}\right)}\right)^2$$

Or which is the same:

$$f(t)=-\Re\left(\frac{\left(\zeta (c) \zeta \left(i t+\frac{1}{2}\right)\right) \zeta \left(-c-\left(i t+\frac{1}{2}\right)+2\right)}{\zeta \left(c+\left(i t+\frac{1}{2}\right)-1\right) \left(\zeta (1-c) \zeta \left(1-\left(i t+\frac{1}{2}\right)\right)\right)}\right) \Re\left(\frac{\zeta '\left(\frac{1}{2}+i t\right)}{\zeta \left(i t+\frac{1}{2}\right)}\right)^2$$

Dirichlet generating function

Plot of:

$$g(t)=\sqrt{8 \pi t} \left(\frac{1}{2} \log \left(\frac{t}{2 \pi }\right)\right)^2$$

Square root times logarithm squared

Curves $f(t)$ and $g(t)$ plotted together:

plots together

And the comparison of $g(t)$ with $\sqrt{t} \log ^2(t)$: $$\lim_{t\to \infty } \, \frac{\sqrt{8 \pi t} \left(\frac{1}{2} \log \left(\frac{t}{2 \pi }\right)\right)^2}{\sqrt{t} \log ^2(t)} = \sqrt{\frac{\pi }{2}}$$

Clear[s, c, t, r, q];
c = 1 + 1/2;
r = 1 + 1/1000;
ListPlot[Table[-Re[(Zeta[(1/2 + I*t)] Zeta[c] )/
      Zeta[-1 + c + (1/2 + I*t)]  * 
      Zeta[2 - c - (1/2 + I*t)]/(Zeta[1 - (1/2 + I*t)]*Zeta[1 - c])]*
   Re[Zeta'[(1/2 + I*t)] /Zeta[(1/2 + I*t)]  ]^2, {t, 0, 60, 1}], 
 DataRange -> {0, 60}]
Plot[Sqrt[8*Pi*t]*(1/2 Log[t/(2 \[Pi])])^2, {t, 0, 60}]
Show[%%, %]
ListLinePlot[
 Table[-Re[(Zeta[(1/2 + I*t)] Zeta[c] )/Zeta[-1 + c + (1/2 + I*t)]  * 
       Zeta[2 - c - (1/2 + I*t)]/(Zeta[1 - (1/2 + I*t)] Zeta[1 - c])]*
    Re[Zeta'[(1/2 + I*t)] /Zeta[(1/2 + I*t)]  ]^2 - 
   Sqrt[8*Pi*t]*(1/2 Log[t/(2 \[Pi])])^2, {t, 1/100, 60}]]
Clear[t];
Limit[(Sqrt[8*Pi*t]*(1/2 Log[t/(2 \[Pi])])^2)/(Sqrt[t]*Log[t]^2), 
 t -> Infinity]
Mats Granvik
  • 1,133
  • Is https://en.wikipedia.org/wiki/Dirichlet_series#Abscissa_of_convergence related to your question? – Steven Clark May 28 '22 at 20:52
  • @StevenClark I don't know, I can't say. – Mats Granvik May 29 '22 at 08:54
  • The article seems to relate the growth of the arithmetic summatory function $f(x)=\sum\limits_{n=1}^x a(n)$ to the abscissa of convergence of the related Dirichlet series $F(s)=\sum\limits_{n=1}^\infty \frac{1}{n^s}$, so it seemed to me it's related to the title of your question, but I'm not sure I understand your question. – Steven Clark May 29 '22 at 14:17
  • The bound on Chebyshev psi $|\psi(x)-x|$ is: $$\frac{\sqrt x,\ln^2 x}{8\pi} \sim \sqrt{8 \pi t} \left(\frac{1}{2} \log \left(\frac{t}{2 \pi }\right)\right)^2 \sim -\frac{\zeta \left(\frac{3}{2}\right)}{\zeta \left(-\frac{1}{2}\right)}\Re\left(\frac{\zeta \left(\frac{1}{2}+i t\right) \zeta (-i t)}{\zeta \left(\frac{1}{2}-i t\right) \zeta (1+i t)}\right)\Re\left(\frac{\zeta '\left(\frac{1}{2}+i t\right)}{\zeta \left(i t+\frac{1}{2}\right)}\right)^2$$ with the right hand side expression consisting of Dirichlet generating functions for some two dimensional matrix yet to be explored. – Mats Granvik May 29 '22 at 14:24
  • Chebyshev psi is this known two dimensional matrix https://oeis.org/A309229 by the formula:
    Chebyshev psi(n) = log(A003418(n)) = Sum_{k>=1} (T(n, k)/k - 1/k). Where T(n, k)=A309229(n,k). Therefore I am seeking to compare those two matrices. The known one, and the yet to be explored one.
    – Mats Granvik May 29 '22 at 14:32
  • I'm a little confused by the two parts of your question separated by your actual question in the middle. Is the second part after your question a continuation of the first part before your question? Are either or both of these specifically related to $|\psi(x)-x|$, or are they related to the error term for some other $f(x)=\sum\limits_{n=1}^x a(n)$? If neither, how is the function in your question analogous to $|\psi(x)-x$|? – Steven Clark May 30 '22 at 17:21
  • There are missing words in the first part, but I don't want to bump the question to the main. The second part is just some notes and observations. The function comes from: $$\sum\limits_{k=1}^{\infty}\sum\limits_{n=1}^{\infty} \frac{T(n,k)}{n^c \cdot k^s} = \sum\limits_{n=1}^{\infty} \frac{\lim\limits_{z \rightarrow s} \zeta(z)\sum\limits_{d|n} \frac{\mu(d)}{d^{(z-1)}}}{n^c} = \frac{\zeta(s) \cdot \zeta(c)}{\zeta(c + s - 1)}$$

    $$-\frac{\zeta '(s)}{\zeta (s)}=\lim_{c\to 1} , \left(\frac{\zeta (c) \zeta (s)}{\zeta (c+s-1)}-\zeta (c)\right)$$ where: T(n,k) = A191898(n,k), and $s>1$ $c>1$.

    – Mats Granvik May 30 '22 at 17:40
  • The Riemann hypothesis is equivalent to is $$|\psi(x)-x|\le\frac{\sqrt x,\ln^2 x}{8\pi}$$ for sufficiently large $x$. https://en.wikipedia.org/wiki/Lowell_Schoenfeld#Contributions And A309229(n,k) is the partial column sums of A191898(n,k). But I don't know the Dirichlet generating function for A309229(n,k), other than for the row sums. – Mats Granvik May 30 '22 at 17:51

0 Answers0