1

I follow a subject almost like this link: Sum of 'the first k' binomial coefficients for fixed $N$ $$ f(N,k) = \sum^{k}_{i=0} \binom{N}{i} . $$ Michael Lugo suggest a way with geometric series : $$\sum^{k}_{i=0} \binom{N}{i} \leqslant \binom{N}{i} \cdot \frac{ n-k+1 }{(n-2\cdot k+1)}\label{1}\tag{ML} $$

Using Pascal's rule , $\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k} $ , I compress the terms to obtain others series $$ \begin{split} \sum^{k}_{i=0} \binom{N}{i} & = \binom{n}{k} + \binom{n}{k-1} + \binom{n}{k-2} + \binom{n}{k-3} + \ldots \\ &= \binom{n+1}{k} + \binom{n+1}{k-2}+\dots\;. \end{split}$$ This implies $$ \begin{split} \dfrac{ \sum^{k}_{i=0} \binom{N}{i} }{ \binom{n+1}{k} } & = 1 + \frac{(k-1) \cdot k}{(n-k+2) \cdot (n-k+3)} \\ & \quad + \frac{(k-3) \cdot (k-2) \cdot (k-1) \cdot k}{(n-k+2) \cdot (n-k+3) \cdot (n-k+4) \cdot (n-k+5)}\\ & \quad + \frac{(k-5) \cdot (k-4) \cdot (k-3) \cdot (k-2) \cdot (k-1) \cdot k}{(n-k+2) \cdot (n-k+3) \cdot (n-k+4) \cdot (n-k+5) \cdot (n-k+6) \cdot (n-k+7)} + \ldots\\ &\approx \frac{ (n-k+2) \cdot (n-k+3)}{(n+2) \cdot (n-2\cdot k+3)} \end{split} $$ the term of the series is $((k-1)\cdot k)/((n-k+2)\cdot(n-k+3)))$ so: $$ \sum^{k}_{i=0} \binom{N}{i} \approx \binom{n+1}{k} \cdot\frac{ (n-k+2) \cdot (n-k+3)}{(n+2) \cdot (n-2\cdot k+3)} \label{2}\tag{F1} $$ If we start at the third terms we have: $$ \begin{split} \frac{ \sum^{k}_{i=0} \binom{N}{i} }{ \binom{n+1}{k} } & = 1+ \frac{(k-1) \cdot k}{(n-k+2) \cdot (n-k+3)} \cdot \Bigg( 1 + \frac{(k-3) \cdot (k-2)}{(n-k+4) \cdot (n-k+5)} \\ &\quad+ \frac{(k-5) \cdot (k-4) \cdot (k-3) \cdot (k-2)}{(n-k+4) \cdot (n-k+5) \cdot (n-k+6) \cdot (n-k+7)} + \ldots \Bigg )\\ & \approx 1 + \frac{(k-1) \cdot k}{(n-k+2) \cdot (n-k+3)} \cdot \frac{(n-k+4) \cdot (n-k+5)}{(n+2) \cdot (n-2 \cdot k+7)} \end{split} \label{3}\tag{F2} $$
We can separate the series into 2 series, by taking only one terms on two which give: $$ \begin{split} & \frac{1 }{\binom{n+1}{k}} \cdot\Bigg( \binom{n+1}{k} + \binom{n+1}{k-4} + \binom{n+1}{k-8} + \ldots \Bigg) \\ & = 1+ \frac{(k-3)\cdot(k-2)\cdot(k-1)\cdot k}{(n-k+2)\cdot(n-k+3)\cdot(n-k+4)\cdot(n-k+5)} \\ &\quad + \frac{(k-7)\cdot(k-6)\cdot(k-5)\cdot(k-4)\cdot(k-3)\cdot(k-2)\cdot(k-1)\cdot k}{[(n-k+2)\cdot(n-k+3)\cdot(n-k+4)\cdot(n-k+5)\cdot(n-k+6)\cdot(n-k+7)\cdot(n-k+8)\cdot(n-k+9)]} \\ &\approx \frac{(n-k+2)\cdot(n-k+3)\cdot(n-k+4)\cdot(n-k+5)}{(n+2)\cdot(n-2\cdot k+5)\cdot(n^2-2\cdot k\cdot n+7\cdot n+2\cdot k^2-10\cdot k+12)} \end{split}$$ thus $$ \begin{split} & \frac{1 }{\binom{n+1}{k}} \cdot\Bigg( \binom{n+1}{k-2} + \binom{n+1}{k-6} + \binom{n+1}{k-10} + \ldots\bigg) \\ & = \frac{(k-1)\cdot k}{(n-k+2)\cdot(n-k+3)} \\ & \quad \cdot \Bigg( 1 + \frac{(k-5)\cdot(k-4)\cdot (k-3)\cdot(k-2)}{(n-k+4)\cdot(n-k+5)\cdot(n-k+6)\cdot(n-k+7)} \\ & \quad + \frac{(k-9)\cdot(k-8)\cdot(k-7)\cdot(k-6)}{(n-k+4)\cdot(n-k+5)\cdot(n-k+6)} \\ & \quad\cdot\frac{(k-5)\cdot(k-4)\cdot(k-3)\cdot(k-2)}{(n-k+7)\cdot(n-k+8)\cdot(n-k+9)\cdot(n-k+10)\cdot(n-k+11)} + \ldots \Bigg) \\ & \approx \frac{(k-1)\cdot k}{(n-k+2)\cdot(n-k+3)} \\ & \quad \cdot \frac{(n-k+4)\cdot(n-k+5)\cdot(n-k+6)\cdot(n-k+7)}{(n+2)\cdot(n-2\cdot k+9)\cdot(n^2-2\cdot k\cdot n+11\cdot n+2\cdot k^2-18\cdot k+40)} \end{split} $$ and this implies $$ \begin{split} f(N,k) & \approx \binom{n+1}{k} \\ & \quad \cdot \Bigg( \frac{(n-k+2)\cdot (n-k+3)\cdot(n-k+4)\cdot(n-k+5)}{(n+2)\cdot(n-2\cdot k+5)\cdot (n^2-2\cdot k\cdot n+7\cdot n+2\cdot k^2-10\cdot k+12)}\\ & \quad + \frac{(k-1)\cdot k}{(n-k+2)\cdot (n-k+3)}\\ & \quad \cdot \frac{(n-k+4)\cdot (n-k+5)\cdot (n-k+6)\cdot(n-k+7)}{(n+2)\cdot(n-2\cdot k+9)\cdot(n^2-2\cdot k\cdot n+11\cdot n+2\cdot k^2-18\cdot k+40)} \Bigg) \end{split}\label{4}\tag{F3} $$ This series are sharper, using the calculator PARI/GP , i found the following relative errors:

(N,k) (100,20) (100,40) (100,50) (1000,200) (1000,400) (1000,500)
\ref{1} 0.00626 0.10740 6.51962 0.00069 0.01563 23.65358
\ref{2} 0.000784 0.05096 1.629873 0.000107 0.0096452 7.25888
\ref{3} 2.700 E-5 0.012036 0.371743 6.3169 E-6 0.0039623 2.623599
\ref{4} 3.810 E-6 0.0086979 0.41073 1.338 E-6 0.003315 2.913452

But my problem is that for any approximation when $k \to N/2$ the error is too large, as you can see, because the geometric term converge to one.

I am seeking for an approximate formulation of the sum of binomial coefficient for fixed $N$, with sharp bound, to be differentiable if needed. Can we transform the series to be valid when $k\to N/2 $?

Best regards

tess35
  • 21

1 Answers1

2

$\newcommand\ep\varepsilon$According to the Theorem on p. 129 of Uspensky, for all $n\ge100$ and all integers $k$ we have $$f(n,k)=2^n(\Phi(z_{n,k})+\ep_{n,k}), \tag{10}\label{10}$$ where $\Phi$ is the standard normal cumulative distribution function, $$z_{n,k}:=\frac2{\sqrt n}\Big(k-\frac{n-1}2\Big),$$ and $$|\ep_{n,k}|<\frac{0.52}n+e^{-3\sqrt n/4}.$$

In particular, if $k\approx n/2$, then $\Phi(z_{n,k})\approx1/2$ and hence the relative error of the approximation of $f(n,k)$ by $2^n\Phi(z_{n,k})$ is no more than $\approx\frac{1.04}n+2e^{-3\sqrt n/4}$.

Here is the table of the actual values of the relative errors $$e_{n,k}:=\frac{f_{n,k}}{2^n\Phi(z_{n,k})}-1$$ of the approximation $2^n\Phi(z_{n,k})$ of $f_{n,k}$ provided by formula \eqref{10} for $n=100$ and $k=30,40,50,60,70$:

enter image description here

Here is also the graph $\{(k,e_{n,k})\colon30\le k\le70\}$ for $n=100$:

enter image description here


Approximations of $f(n,k)$ with relative errors $o(1/n^p)$ for (say) $k=n/2+O(\sqrt n)$ for arbitrary real $p>0$ follow immediately from asymptotic expansions of the probability $f(n,k)/2^n$ (that a binomial random variable with parameters $n,1/2$ takes a value $\le k$) such as Theorem 6, Ch. VI in Petrov's book; the original source of this theorem is the paper by Osipov.

Iosif Pinelis
  • 116,648
  • I think i will use this result. Could you elaborate on the last paragraph? Is it this theorem page 171 , https://books.google.fr/books?id=zSDqCAAAQBAJ&printsec=frontcover&redir_esc=y#v=onepage&q&f=false ? $Ur(x) = \Phi(x) + \sum^{[r]-2}_{v=1} \frac{Q_v(x)}{n^{v/2}}$ ? – tess35 Oct 02 '23 at 21:10
  • @tess35 : Yes, it is Theorem 6 on p. 171. – Iosif Pinelis Oct 02 '23 at 21:59
  • @tess35 : I have added a reference to the original source of that Theorem 6. – Iosif Pinelis Oct 03 '23 at 02:44
  • Could you explain what is the $ \alpha_v $ coefficient ? If I understand, for $\nu$ = 1 , k1 = 1 , k2 =0... so K=1, for $\nu$ =2 , (k1=2,k2=0, K=2), (k1=0,k2=1,K=1) . I work on thermodynamic, so i search something like $ \mid (f_{true}-f_{approx})/f_{true} \mid \leq 0.1 $. , to differentiate or transform. – tess35 Oct 04 '23 at 21:08
  • @tess35 : Are you referring here to Osipov's paper? There $\alpha_l=EX_n^l$, as defined just before formula (2) in that paper. I gave you references to Petrov and Osipov only because you were talking about some "very sharp approximation". However, in your latter comment you seem to be talking about the relative error being just $\le0.1$. Then Uspensky's result, stated in the first paragraph of my answer, will be more than enough, as it gives you a simple approximation with a relative error $<0.012$ for $n\ge100$. – Iosif Pinelis Oct 04 '23 at 21:24
  • @tess35 : I have added some numerical and graphical illustrations of Uspensky's approximation. – Iosif Pinelis Oct 04 '23 at 21:49
  • @tess35 : Are you now satisfied with the answer? If so, here are the pertinent guidelines. – Iosif Pinelis Oct 05 '23 at 21:02
  • I was locked on k <n/2 and see the error grow, but it's better for k >n/2, clearly the error is very low, shrink and we could take $ f= 2^n - ur(x)$ for $k\leq n/2 $ And the formula is easy. So i think this topic is closed. – tess35 Oct 05 '23 at 21:08