Several leading mathematicians (e.g. Yuri Manin) have written or said publicly that there is a known outline of a likely natural proof of the Riemann hypothesis using absolute algebraic geometry over the field of one element; some like Mochizuki and Durov are thinking of a possible application of F1-geometry to an even stronger abc conjecture. It seems that this is one of the driving forces for studying algebraic geometry over F1 and that the main obstacle to materializing this proof is that the geometry over F1 (cf. MO what is the field with one element, applications of algebaric geometry over a field with one element) is still not satisfactorily developed. Even a longer-term attacker of the Riemann hypothesis from outside the algebraic geometry community, Alain Connes, has concentrated recently in his collaboration with Katia Consani on the development of a version of geometry over F1.
Could somebody outline for us the ideas in the folklore sketch of the proof of the Riemann hypothesis via absolute geometry ? Is the proof analogous to the Deligne's proof (article) of the Riemann-Weil conjecture (see wikipedia and MathOverflow question equivalent-statements-of-riemann-hypothesis-in-the-weil-conjectures) ?
Grothendieck was not happy with Deligne's proof, since he expected that the proof would/should be based on substantial progress on motives and the standard conjectures on algebraic cycles. Is there any envisioned progress in the motivic picture based on F1-geometry, or even envisioned extensions of the motivic picture ?