I need to prove the commutation relation,
$$[p^2,f] = 2 \frac{\hbar}{i}\frac{\partial f}{\partial x} p - \hbar^2 \frac{\partial^2 f}{\partial x^2}$$
where $f \equiv f(\vec{r})$ and $\vec{p} = p_x \vec{i}$
I know
$$[AB,C] = A[B,C] + [A,C]B$$
Applying this, I get
$$[p^2,f] = p[p,f] + [p,f]p$$
where $p = \frac{\hbar}{i}\frac{\partial}{\partial x}$, and $[p,f] \equiv pf - fp$
using a trial function, $g(x)$, I get
$$[p^2,f] = p[p,f]g + [p,f]pg$$
$$= \frac{\hbar}{i}\frac{\partial}{\partial x}\left[\frac{\hbar}{i}\frac{\partial fg}{\partial x} - f\frac{\hbar}{i}\frac{\partial g}{\partial x}\right] + \left[\frac{\hbar}{i}\frac{\partial fg}{\partial x} - f\frac{\hbar}{i}\frac{\partial g}{\partial x}\right] \frac{\hbar}{i}\frac{\partial}{\partial x}$$
using the product rule
$$ = -\hbar^2 \frac{\partial}{\partial x}\left[g \frac{\partial f}{\partial x} + f \frac{\partial g}{\partial x} - f \frac{\partial g}{\partial x} \right] + \left[g \frac{\partial f}{\partial x} + f \frac{\partial g}{\partial x} - f \frac{\partial g}{\partial x} \right] \frac{\hbar}{i}^2 \frac{\partial}{\partial x}$$
cancelling the like terms in the brackets gives
$$= -\hbar^2 \frac{\partial}{\partial x} \left[g \frac{\partial f}{\partial x}\right] - \left[g \frac{\partial f}{\partial x}\right]\hbar^2 \frac{\partial}{\partial x}$$
using the product rule again gives
$$ = -\hbar^2 \left[\frac{\partial g}{\partial x} \frac{\partial f}{\partial x} + g \frac{\partial^2 f}{\partial x^2} \right] - \left[g \frac{\partial f}{\partial x}\right] \hbar^2 \frac{\partial}{\partial x}$$
$\frac{\partial g}{\partial x} = 0$, so
$$ = -\hbar^2 g \frac{\partial^2}{\partial x^2} - \hbar^2 g \frac{\partial f}{\partial x} \frac{\partial}{\partial x}$$
Substituting the momentum operator back in gives
$$ = -\hbar^2 g \frac{\partial^2}{\partial x^2} - \frac{\hbar}{i} g \frac{\partial f}{\partial x} p$$
The trial function, $g$, can now be dropped,
$$ = -\hbar^2 \frac{\partial^2}{\partial x^2} - \frac{\hbar}{i}\frac{\partial f}{\partial x}p$$
But this is not what I was supposed to arrive at. Where did I go wrong?