I am a mathematician. I have a (somewhat long term) goal of understanding some of the physical insights that have influenced my area of research. To this end I read Arnold's Mathematical methods in classical mechanics a while ago, but something I didn't understand has been bugging me ever since.
In the first chapter Arnold defines a motion of $n$ particles in $\mathbb{R}^3$ as a map $\mathbf{x}:\mathbb{R} \rightarrow \mathbb{R}^N$ for $N=3n$. The first chapter is then about what types of motion are allowed. In section 2D Arnold makes the following observation:
According to Newton's principle of determinacy all motions of a system are uniquely determined by their initial positions ($\mathbf{x}(t_0) \in \mathbb{R}^N$) and initial velocities ($\mathbf{\dot{x}}(t_0) \in \mathbb{R}^N$).
This seems important and I expect that this would have an impact on what types of functions $\mathbf{x}$ could be. He goes on:
In particular, the initial positions and velocities determine the acceleration. In other words, there is a function $\mathbf{F} : \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R} \rightarrow \mathbb{R}^N$ such that $$ \mathbf{\ddot{x}} = \mathbf{F}(\mathbf{x},\mathbf{\dot{x}},t). $$
So the implication of Newton's determinacy principle is that the acceleration obeys a second order differential equation. This seems completely vacuous to me. Any function $\mathbf{x}$ obeys a second order differential equation (as long as it is twice differentiable).
Could someone please explain to me what Arnold is saying here. I feel like I am missing something important.