To formally show the Schwinger-Dyson equations, use the fact the
$$\begin{align}0~=~&\int [d\phi]\frac{\delta}{\delta \phi^{\alpha}(x)} \left\{F[\phi]\exp\left[\frac{i}{\hbar}\left(S[\phi]+\int \!d^nx^{\prime}~J_{\alpha}(x^{\prime})\phi^{\alpha}(x^{\prime}) \right)\right]\right\}\cr
~=~&\int [d\phi]\left\{\frac{\delta F[\phi]}{\delta \phi^{\alpha}(x)} + \frac{i}{\hbar}F[\phi]\left(\frac{\delta S[\phi]}{\delta \phi^{\alpha}(x)}+J(x)\right)\right\}\cr &\qquad \exp\left[\frac{i}{\hbar}\left(S[\phi]+\int \!d^nx^{\prime}~J_{\alpha}(x^{\prime})\phi^{\alpha}(x^{\prime}) \right)\right]\cr
~\propto~&\left<\frac{\delta F[\phi]}{\delta \phi^{\alpha}(x)} + \frac{i}{\hbar}F[\phi]\left(\frac{\delta S[\phi]}{\delta \phi^{\alpha}(x)}+J(x)\right)\right>_{\!J} ,
\end{align}$$
cf. this Phys.SE post. Without specifying the action $S[\phi]$ and field content $\phi^{\alpha}$ further, it is impossible to provide a rigorous proof, since the path integral is not properly defined in the first place. See also this related Phys.SE post.