i mean let be the integral
$$ \int_{0}^{\infty} \frac{p^{3}}{(p^{2}+m^{2})^{2}} $$
logartihmic divergence but if a apply differentiation with respect to $ m^{2} $ i get
$$ \int_{0}^{\infty} \frac{-2p^{3}}{(p^{2}+m^{2})^{3}}=I(m) $$ wich is convergent so
is the real integral then of the form $$ \int_{0}^{\infty} \frac{p^{3}}{(p^{2}+m^{2})^{2}}= D^{-1}I(m)+C_{m} $$
and if so how i get the constant $ C_{m} $