0

Wikipedia derivation of the relationship between a torque and an angular acceleration is given here.

Could someone help me to see how the following: $$\vec{\tau} = \left(-\sum^n_{i=1}m_i [\Delta r_i]^2\right) \vec{\alpha} + \vec{\omega} \times \left(-\sum^n_{i=1}m_i [\Delta r_i]^2\right) \vec{\omega}$$ is obtained from the following: $$\vec{\tau} = \sum^n_{i=n} (\vec{r}_i - \vec{R}) \times (m_i \vec{a}_i)$$ by using Jacobi identity, please?

My attempt at the derivation is as follows: $$\vec{\tau} = \sum^n_{i=n} (\vec{r}_i - \vec{R}) \times (m_i \vec{a}_i) \\ \hphantom{\vec{\tau}} = \sum^n_{i=n} \vec{\Delta r_i} \times (m_i \vec{a}_i) \\ \hphantom{\vec{\tau}} = \sum^n_{i=n} m_i (\vec{\Delta r_i} \times \vec{a}_i) \\ \hphantom{\vec{\tau}} = \sum^n_{i=n} m_i (\vec{\Delta r_i} \times (\vec{\alpha} \times \vec{\Delta r_i} + \vec{\omega} \times (\vec{\omega} \times \vec{\Delta r_i})))\;\ldots\;\vec{R}\text{ is centroid} \\ \hphantom{\vec{\tau}} = \sum^n_{i=n} m_i (\vec{\Delta r_i} \times (\vec{\alpha} \times \vec{\Delta r_i}) + (\vec{\Delta r_i} \times (\vec{\omega} \times (\vec{\omega} \times \vec{\Delta r_i})))\;\ldots\text{ cross-product distributivity over addition} \\ $$

Then, I try the Jacobi identity on the second term as follows: $$\vec{\Delta r_i} \times (\vec{\omega} \times (\vec{\omega} \times \vec{\Delta r_i})) + \vec{\omega} \times ((\vec{\omega} \times \vec{\Delta r_i}) \times \vec{\Delta r_i}) + (\vec{\omega} \times \vec{\Delta r_i}) \times (\vec{\Delta r_i} \times \vec{\omega}) = \vec{0}$$

The last term on the LHS is $\vec{0}$ because $$(\vec{\omega} \times \vec{\Delta r_i}) \times (\vec{\Delta r_i} \times \vec{\omega}) \\ = (\vec{\omega} \times \vec{\Delta r_i}) \times -(\vec{\omega} \times \vec{\Delta r_i}) \\ = -[(\vec{\omega} \times \vec{\Delta r_i}) \times (\vec{\omega} \times \vec{\Delta r_i})] \\ = \vec{0}$$

So, $$\vec{\Delta r_i} \times (\vec{\omega} \times (\vec{\omega} \times \vec{\Delta r_i})) + \vec{\omega} \times ((\vec{\omega} \times \vec{\Delta r_i}) \times \vec{\Delta r_i}) = \vec{0}$$

That is different from the one stated in the Wikipedia.

However, I try to continue with my own finding as follows: $$\vec{\Delta r_i} \times (\vec{\omega} \times (\vec{\omega} \times \vec{\Delta r_i})) + \vec{\omega} \times ((\vec{\omega} \times \vec{\Delta r_i}) \times \vec{\Delta r_i}) = \vec{0} \\ \vec{\Delta r_i} \times (\vec{\omega} \times (\vec{\omega} \times \vec{\Delta r_i})) = -[\vec{\omega} \times ((\vec{\omega} \times \vec{\Delta r_i}) \times \vec{\Delta r_i})] \\ \vec{\Delta r_i} \times (\vec{\omega} \times (\vec{\omega} \times \vec{\Delta r_i})) = \vec{\omega} \times -((\vec{\omega} \times \vec{\Delta r_i}) \times \vec{\Delta r_i}) \\ \vec{\Delta r_i} \times (\vec{\omega} \times (\vec{\omega} \times \vec{\Delta r_i})) = \vec{\omega} \times (\vec{\Delta r_i} \times (\vec{\omega} \times \vec{\Delta r_i}))$$ to have the following: $$\vec{\tau} = \sum^n_{i=n} m_i (\vec{\Delta r_i} \times (\vec{\alpha} \times \vec{\Delta r_i}) + (\vec{\Delta r_i} \times (\vec{\omega} \times (\vec{\omega} \times \vec{\Delta r_i}))) \\ \hphantom{\vec{\tau}} = \sum^n_{i=n} m_i (\vec{\Delta r_i} \times (\vec{\alpha} \times \vec{\Delta r_i}) + \vec{\omega} \times (\vec{\Delta r_i} \times (\vec{\omega} \times \vec{\Delta r_i}))) \\ \hphantom{\vec{\tau}} = \sum^n_{i=n} m_i ([\Delta r_i]^2 \vec{\alpha} - (\vec{\Delta r_i} \cdot \vec{\alpha}) \vec{\Delta r_i} + \vec{\omega} \times ([\Delta r_i]^2 \vec{\omega} - (\vec{\Delta r_i} \cdot \vec{\omega}) \vec{\Delta r_i})) \\ \hphantom{\vec{\tau}} = \sum^n_{i=n} m_i ([\Delta r_i]^2 \vec{\alpha} - (\vec{\Delta r_i} \cdot \vec{\alpha}) \vec{\Delta r_i} + \vec{\omega} \times [\Delta r_i]^2 \vec{\omega} - \vec{\omega} \times (\vec{\Delta r_i} \cdot \vec{\omega}) \vec{\Delta r_i}) \\ \hphantom{\vec{\tau}} = \sum^n_{i=n} m_i ([\Delta r_i]^2 \vec{\alpha} - (\vec{\Delta r_i} \cdot \vec{\alpha}) \vec{\Delta r_i} + (0) - \vec{\omega} \times (\vec{\Delta r_i} \cdot \vec{\omega}) \vec{\Delta r_i}) \\ \hphantom{\vec{\tau}} = \sum^n_{i=n} m_i ([\Delta r_i]^2 \vec{\alpha} - (\vec{\Delta r_i} \cdot \vec{\alpha}) \vec{\Delta r_i} - \vec{\omega} \times (\vec{\Delta r_i} \cdot \vec{\omega}) \vec{\Delta r_i})$$

Then, I get stuck there.

If you want to help, please show the complete derivation instead of just hinting here and there unless you have the complete derivation already in your mind.

Qmechanic
  • 201,751

0 Answers0