The problem in Sredniki's textbook 10.5 :
For a free scalar field $\psi$, the Lagrangian is $$\cal{L}= -\frac{1}{2}\partial^\mu\psi\partial_\mu\psi-\frac{1}{2}m^2\psi^2$$ Here we use the metric $\operatorname{diag}(- + + +)$
If I make $\psi=\phi+\lambda \phi^2$, then the Lagrangian is $$\cal{L}= -\frac{1}{2}\partial^\mu\phi\partial_\mu\phi-\frac{1}{2}m^2\phi^2-2\lambda\phi\partial^\mu\phi\partial_\mu\phi-\lambda m^2\phi^3-2\lambda^2\phi^2\partial^\mu\phi\partial_\mu\phi-\frac{1}{2}\lambda^2m^2\phi^4$$
For scattering $\phi\phi \to \phi\phi $, how do I calculate the loop correction? Since the Lagrangian is now nonrenormalizable. In loop correction we need to take ghost into consideration.