From Wikipedia:
The neutrino was postulated first by Wolfgang Pauli in 1930 to explain how beta decay could conserve energy, momentum, and angular momentum (spin). In contrast to Niels Bohr, who proposed a statistical version of the conservation laws to explain the event, Pauli hypothesized an undetected particle that he called a "neutron" in keeping with convention employed for naming both the proton and the electron, which in 1930 were known to be respective products for alpha and beta decay.[6][nb 2][nb 3]
n0 → p+ + e− + νe James Chadwick discovered a much more massive nuclear particle in 1932 and also named it a neutron, leaving two kinds of particles with the same name. Enrico Fermi, who developed the theory of beta decay, coined the term neutrino (the Italian equivalent of "little neutral one") in 1933 as a way to resolve the confusion.[7][nb 4] Fermi's paper, written in 1934, unified Pauli's neutrino with Paul Dirac's positron and Werner Heisenberg's neutron-proton model and gave a solid theoretical basis for future experimental work.
Can you explain why beta decay could not be explained by adding that tiny amount of energy (attributed to the neutrino) to the KE of the emitted electron?