I am trying to quantize the quartic potential $(\lambda/4!)\phi^{4}$ in a box of side length $L$, with periodic boundary conditions. I have expanded the field
$$\phi = \sum \limits_{\vec{n}} \exp(i \vec{k}_{\vec{n}} \cdot \vec{x}) a_{\vec{n}}(t)+ h.c.$$
where $\vec{k}_{\vec{n}}=(2\pi \vec{n}/L)$, $a_{\vec{n}}(t)$ are the annihilation operator for state $\vec{n}$. On substituting this in $(\phi^{\dagger}\phi)^{2}$, I get many terms, and dropping all the terms that don't conserve particle number, I am left with terms like
$$aa^{\dagger}aa^{\dagger}, \quad aaa^{\dagger}a^{\dagger}$$
etc. I am trying to normal order them so that I end up getting the non relativistic result i.e.
$$\sum\limits_{\vec{n_{1}},\vec{n_{2}},\vec{n_{3}},\vec{n_{4}}}\frac{-\lambda}{4m^{2}V}\delta_{\vec{n_{1}}+\vec{n_{2}},\vec{n_{3}}+\vec{n_{4}}}a_{\vec{n_{1}}}^{\dagger}a_{\vec{n_{2}}}^{\dagger}a_{\vec{n_{3}}}a_{\vec{n_{4}}} \, .$$
My problem is when I try to normal order terms like $aa^{\dagger}aa^{\dagger}$, I get terms like $a_{\vec{n_{1}}}^{\dagger}a_{\vec{n_{2}}}\delta_{\vec{n_{3}},\vec{n_{4}}}$ in the process of normal ordering (due to equal time commutation relation). What happens to these terms, why don't they show up in the final answer? Is it because they are particle number operator and we drop them?