1

mean let be a theory A in which the divergent integrals appear

$ \int_{0}^{\infty}dx $ and $ \int_{0}^{\infty}xdx $

and let be another physical theory with 3 types of divergences

$ \int_{0}^{\infty}dx $ , $ \int_{0}^{\infty}xdx$ and $ \int_{0}^{\infty}x^{2}dx

my question is if $ renormA ( \int_{0}^{\infty}dx)=renormB (\int_{0}^{\infty}dx)$

so all the divergent integrals are renoramlizaed in an unique way

by the way is it true within zeta regularization that $ \int_{0}^{\infty}dx = \sum_{n=0}^{\infty}1=1/2$ in the spirit of zeta function regularization

0 Answers0