mean let be a theory A in which the divergent integrals appear
$ \int_{0}^{\infty}dx $ and $ \int_{0}^{\infty}xdx $
and let be another physical theory with 3 types of divergences
$ \int_{0}^{\infty}dx $ , $ \int_{0}^{\infty}xdx$ and $ \int_{0}^{\infty}x^{2}dx
my question is if $ renormA ( \int_{0}^{\infty}dx)=renormB (\int_{0}^{\infty}dx)$
so all the divergent integrals are renoramlizaed in an unique way
by the way is it true within zeta regularization that $ \int_{0}^{\infty}dx = \sum_{n=0}^{\infty}1=1/2$ in the spirit of zeta function regularization