I have come across the expression $$ \int f(x) \delta(x-a) \delta''(x-a) \mathrm dx$$ where the prime represents the derivative.
Usually with derivatives of the Dirac delta distribution I'd partially integrate, but here I keep running in circles. What I tried is \begin{align} \int f \delta \delta'' &= - \int (f \delta)' \delta' = -\int f' \delta \delta' - \int f \delta' \delta' = - \int f' \delta \delta' + \int (f \delta')' \delta\\ & ={} - \int f' \delta \delta' + \int f' \delta' \delta + \int f \delta '' \delta= \int f \delta \delta'' \end{align} or if I take the other term for the second partial integration \begin{align} \int f \delta \delta'' &= - \int (f \delta)' \delta' = \int (f \delta)'' \delta = \int f'' \delta \delta + 2 \int f' \delta' \delta + \int f \delta '' \delta \\ \Rightarrow 0 &= \int f'' \delta \delta + 2 \int f' \delta' \delta \end{align} which I also could have gotten from elementary partial integration of $ f'' \delta^2 $.
What further options do I have? Squares of delta functions etc. are not a problem.
u = x - a .
So, you'll have
∫f(u+a)δ(u)δ′′(u)du .
For the rest, I don't see a possible escape of δ′′, I also tried. So, let's integrate straightly your initial integrand. You get, ∫f(u+a)δ(u)δ′′(u)du = f(a)δ′′(0).
Unfortunately, δ′′(0) = −∞ .
– Sofia Nov 11 '14 at 19:16