The final states $\left|j,m\right\rangle$ arising from the coupling of two angular momenta $j_{\alpha}$
and $j_{\beta}$ are related to the initial uncoupled states $\left|j_{\alpha},m^{\alpha}\right\rangle, \left|j_{\beta},m^{\beta}\right\rangle$ through the so called Glebsch-Gordan coefficients $ C_{jm^{\alpha}m^{\beta}}^{j_{\alpha}j_{\beta}}$
\begin{equation}
\left|j,m\right\rangle =\sum_{m^{\alpha},m^{\beta}}^{m^{\alpha}\!+m^{\beta}=m}C_{jm^{\alpha}m^{\beta}}^{j_{\alpha}j_{\beta}}\left|j_{\alpha},m^{\alpha}\right\rangle \left|j_{\beta},m^{\beta}\right\rangle
\tag{01}
\end{equation}
where
\begin{equation}
\begin{split}
& j=\vert j_{\alpha}-j_{\beta}\vert,\vert j_{\alpha}-j_{\beta}\vert+1 , \cdots , j_{\alpha}+j_{\beta}\\
& m=-j,-j+1, \cdots , j-1,j\\
& m= m^{\alpha}+m^{\beta}\\
& m^{\alpha} = -j_{\alpha},-j_{\alpha}+1, \cdots, j_{\alpha}-1,j_{\alpha}\\
& m^{\beta} = -j_{\beta},-j_{\beta}+1, \cdots, j_{\beta}-1,j_{\beta}\\
& \left|j_{\alpha},m^{\alpha}\right\rangle \left|j_{\beta},m^{\beta}\right\rangle=\left|j_{\alpha},m^{\alpha}\right\rangle \boldsymbol{\otimes}\left|j_{\beta},m^{\beta}\right\rangle
\end{split}
\tag{02}
\end{equation}
These coefficients are given by equation (03)
\begin{equation}
\begin{split}
& C_{jm^{\alpha}m^{\beta}}^{j_{\alpha}j_{\beta}}=\\
& \frac{\sqrt{\left(j+j_{\alpha}-j_{\beta}\right)!\left(j-j_{\alpha}+j_{\beta}\right)!\left(j_{\alpha}+j_{\beta}-j\right)!\left(j+m^{\alpha}+m^{\beta}\right)!\left(j-m^{\alpha}-m^{\beta}\right)!}}{\sqrt{\left(j+j_{\alpha}+j_{\beta}+1\right)!\left(j_{\alpha}-m^{\alpha}\right)!\left(j_{\alpha}+m^{\alpha}\right)!\left(j_{\beta}-m^{\beta}\right)!\left(j_{\beta}+m^{\beta}\right)!}}\\
&\times \sum_{\varkappa}\frac{\left(-1\right)^{\varkappa+j_{\beta}+m^{\beta}}\sqrt{\left( 2j+1\right) }\left(j+j_{\beta}+m^{\alpha}-\varkappa \right)!\left(j_{\alpha}-m^{\alpha}+\varkappa\right)!}{\left(j-j_{\alpha}+j_{\beta}-\varkappa \right)!\left(j+m^{\alpha}+m^{\beta}-\varkappa \right)!\varkappa!\left(\varkappa + j_{\alpha}-j_{\beta}-m^{\alpha}-m^{\beta}\right)!}
\end{split}
\tag{03}
\end{equation}
The variable $\,\varkappa\,$ in series takes all nonnegative integer values for which all factorials have sense.
Interchanging $j_{\alpha}$ and $j_{\beta}$ and simultaneously $m^{\alpha}$ and $m^{\beta}$ yields
\begin{equation}
\begin{split}
& C_{jm^{\beta}m^{\alpha}}^{j_{\beta}j_{\alpha}}=\\
& \frac{\sqrt{\left(j+j_{\alpha}-j_{\beta}\right)!\left(j-j_{\alpha}+j_{\beta}\right)!\left(j_{\alpha}+j_{\beta}-j\right)!\left(j+m^{\alpha}+m^{\beta}\right)!\left(j-m^{\alpha}-m^{\beta}\right)!}}{\sqrt{\left(j+j_{\alpha}+j_{\beta}+1\right)!\left(j_{\alpha}-m^{\alpha}\right)!\left(j_{\alpha}+m^{\alpha}\right)!\left(j_{\beta}-m^{\beta}\right)!\left(j_{\beta}+m^{\beta}\right)!}}\\
&\times \sum_{\varkappa}\frac{\left(-1\right)^{\varkappa+j_{\alpha}+m^{\alpha}}\sqrt{\left( 2j+1\right) }\left(j+j_{\alpha}+m^{\beta}-\varkappa \right)!\left(j_{\beta}-m^{\beta}+\varkappa\right)!}{\left(j+j_{\alpha}-j_{\beta}-\varkappa \right)!\left(j+m^{\alpha}+m^{\beta}-\varkappa \right)!\varkappa!\left(\varkappa - j_{\alpha}+j_{\beta}-m^{\alpha}-m^{\beta}\right)!}
\end{split}
\tag{04}
\end{equation}
As pointed out in Wigner(1) $\; C_{jm^{\alpha}m^{\beta}}^{j_{\alpha}j_{\beta}}$ will remain unchanged if $j_{\alpha}$ and $j_{\beta}$ and simultaneously $m^{\alpha}$ and $m^{\beta}$ are interchanged and on this result the factor $\left(-1\right)^{j_{\alpha}+j_{\beta}-j}$ is applied
\begin{equation}
C_{jm^{\alpha}m^{\beta}}^{j_{\alpha}j_{\beta}} =\left(-1\right)^{j_{\alpha}+j_{\beta}-j} C_{jm^{\beta}m^{\alpha}}^{j_{\beta}j_{\alpha}}
\tag{05}
\end{equation}
Note that under a second interchange the overall factor would be $\left(-1\right)^{2\left(j_{\alpha}+j_{\beta}-j\right)}=+1$ as expected, since $\left(j_{\alpha}+j_{\beta}-j\right)$ is always a (non-negative) integer.
So for $j_{\alpha}=I=j_{\beta}$ the two coefficients differ by $(-1)^\left(2I-j\right)$ and in agreement with Michael Seifert's answer :
the combined states are symmetric when $2I$ and $j$ are both even or both odd, and antisymme- tric when one quantity is even and the other is odd.
Examples :
- $\qquad j_{\alpha}=\frac{1}{2}=j_{\beta}$
\begin{equation}
\boldsymbol{2}\boldsymbol{\otimes}\boldsymbol{2}=\boldsymbol{1}\boldsymbol{\oplus}\boldsymbol{3}
\nonumber
\end{equation}
\begin{equation}
\begin{bmatrix}
\left|0,\hphantom{\!\!-\!}0\right\rangle\vphantom{\left|\frac12,\!\!-\frac12\right\rangle_{\beta}}\\
\left|1,\!\!-\!1\right\rangle\vphantom{\left|\frac12,\!\!-\frac12\right\rangle_{\beta}}\\
\left|1,\hphantom{\!\!-\!}0\right\rangle\vphantom{\left|\frac12,\!\!-\frac12\right\rangle_{\beta}}\\
\left|1,\!\!+\!1\right\rangle\vphantom{\left|\frac12,\!\!-\frac12\right\rangle_{\beta}}
\end{bmatrix}
=
\begin{bmatrix}
0&-\rho\hphantom{+}&+\rho\hphantom{+}&0\vphantom{\left|\frac{1} {2},\!\!-\frac12\right\rangle_{\beta}}\\
+1\hphantom{+}&0&0&0\vphantom{\left|\frac{1} {2},\!\!-\frac12\right\rangle_{\beta}}\\
0&+\rho\hphantom{+}&+\rho\hphantom{+}&0\vphantom{\left|\frac{1} {2},\!\!-\frac12\right\rangle_{\beta}}\\
0&0&0&+1\hphantom{+}\vphantom{\left|\frac{1} {2},\!\!-\frac12\right\rangle_{\beta}}
\end{bmatrix}
\begin{bmatrix}
\left|\frac{1}{2},\!\!-\frac{1}{2}\right\rangle_{\alpha}\left|\frac{1} {2},\!\!-\frac12\right\rangle_{\beta}\\
\left|\frac{1}{2},\!\!-\frac{1}{2}\right\rangle_{\alpha}\left|\frac{1}{2},\!\!+\frac12\right\rangle_{\beta}\\
\left|\frac{1}{2},\!\!+\frac{1}{2}\right\rangle_{\alpha}\left|\frac{1}{2},\!\!-\frac12\right\rangle_{\beta}\\
\left|\frac{1}{2},\!\!+\frac{1}{2}\right\rangle_{\alpha}\left|\frac{1}{2},\!\!+\frac12\right\rangle_{\beta}
\end{bmatrix}
\, , \quad \rho = \sqrt{\tfrac12}
\tag{Ex-01}
\end{equation}
$\boldsymbol{1} : \left|0,\,0\,\right\rangle \Longrightarrow \text{antisymmetric}$
$\boldsymbol{3} : \left|1,\!\!-\!1\right\rangle,\left|1,0\right\rangle,\left|1,\!\!-\!1\right\rangle\Longrightarrow \text{symmetric}$
- $\qquad j_{\alpha}=1=j_{\beta}$
\begin{equation}
\boldsymbol{3}\boldsymbol{\otimes}\boldsymbol{3}=\boldsymbol{1}\boldsymbol{\oplus}\boldsymbol{3}\boldsymbol{\oplus}\boldsymbol{5}
\nonumber
\end{equation}
\begin{equation}
\!\!\!\!\!\!\!\!\!\!
\begin{bmatrix}
\left|0,\hphantom{\!\!-\!}0\right\rangle\vphantom{\left|1,\!\!-\!1 \right\rangle_{\beta}} \\
\left|1,\!\!-\!1\right\rangle\vphantom{\left|1,\!\!-\!1 \right\rangle_{\beta}} \\
\left|1,\hphantom{\!\!-\!}0\right\rangle\vphantom{\left|1,\!\!-\!1 \right\rangle_{\beta}} \\
\left|1,\!\!+\!1\right\rangle\vphantom{\left|1,\!\!-\!1 \right\rangle_{\beta}} \\
\left|2,\!\!-\!2\right\rangle\vphantom{\left|1,\!\!-\!1 \right\rangle_{\beta}} \\
\left|2,\!\!-\!1\right\rangle\vphantom{\left|1,\!\!-\!1 \right\rangle_{\beta}} \\
\left|2,\hphantom{\!\!-\!}0\right\rangle\vphantom{\left|1,\!\!-\!1 \right\rangle_{\beta}} \\
\left|2,\!\!+\!1\right\rangle\vphantom{\left|1,\!\!-\!1 \right\rangle_{\beta}} \\
\left|2,\!\!+\!2\right\rangle\vphantom{\left|1,\!\!-\!1 \right\rangle_{\beta}}
\end{bmatrix}
\!=\!
\begin{bmatrix}
0&0&+\sigma\hphantom{+}&0&-\sigma\hphantom{+}&0&+\sigma\hphantom{+}&0&0\vphantom{\left|1,\!\!-\!1 \right\rangle_{\beta}} \\
0&-\rho\hphantom{+}&0&+\rho\hphantom{+}&0&0&0&0&0\vphantom{\left|1,\!\!-\!1 \right\rangle_{\beta}} \\
0&0&-\rho\hphantom{+}&0&0&0&+\rho\hphantom{+}&0&0\vphantom{\left|1,\!\!-\!1 \right\rangle_{\beta}} \\
0&0&0&0&0&-\rho\hphantom{+}&0&+\rho\hphantom{+}&0\vphantom{\left|1,\!\!-\!1 \right\rangle_{\beta}} \\
+1\hphantom{+}&0&0&0&0&0&0&0&0\vphantom{\left|1,\!\!-\!1 \right\rangle_{\beta}} \\
0&+\rho\hphantom{+}&0&+\rho\hphantom{+}&0&0&0&0&0\vphantom{\left|1,\!\!-\!1 \right\rangle_{\beta}} \\
0&0&+\tau\hphantom{+}&0&+\upsilon\hphantom{+}&0&+\tau\hphantom{+}&0&0\vphantom{\left|1,\!\!-\!1 \right\rangle_{\beta}} \\
0&0&0&0&0&+\rho\hphantom{+}&0&+\rho\hphantom{+}&0\vphantom{\left|1,\!\!-\!1 \right\rangle_{\beta}} \\
0&0&0&0&0&0&0&0&+1\hphantom{+}\vphantom{\left|1,\!\!-\!1 \right\rangle_{\beta}}
\end{bmatrix}
\begin{bmatrix}
\left|1,\!\!-\!1 \right\rangle_{\alpha}\left|1,\!\!-\!1 \right\rangle_{\beta} \\
\left|1,\!\!-\!1 \right\rangle_{\alpha}\left|1,\hphantom{\!\!-\!}0\right\rangle_{\beta} \\
\left|1,\!\!-\!1 \right\rangle_{\alpha}\left|1,\!\!+\!1 \right\rangle_{\beta} \\
\left|1,\hphantom{\!\!-\!}0\right\rangle_{\alpha}\left|1,\!\!-\!1 \right\rangle_{\beta} \\
\left|1,\hphantom{\!\!-\!}0\right\rangle_{\alpha}\left|1,\hphantom{\!\!-\!}0\right\rangle_{\beta} \\
\left|1,\hphantom{\!\!-\!}0 \right\rangle_{\alpha}\left|1,\!\!+\!1\right\rangle_{\beta} \\
\left|1,\!\!+\!1 \right\rangle_{\alpha}\left|1,\!\!-\!1 \right\rangle_{\beta} \\
\left|1,\!\!+\!1 \right\rangle_{\alpha}\left|1,\hphantom{\!\!-\!}0\right\rangle_{\beta} \\
\left|1,\!\!+\!1\right\rangle_{\alpha}\left|1,\!\!+\!1\right\rangle_{\beta}
\end{bmatrix}
\,, \:
\begin{matrix}
\rho = \sqrt{\frac12} \\
\sigma = \sqrt{\frac13}\\
\tau = \sqrt{\frac16}\\
\upsilon = \sqrt{\frac23}
\end{matrix}
\tag{Ex-02}
\end{equation}
$\boldsymbol{1} : \left|0,\,0\,\right\rangle \Longrightarrow \text{symmetric}$
$\boldsymbol{3} : \left|1,\!\!-\!1\right\rangle,\left|1,0\right\rangle,\left|1,\!\!-\!1\right\rangle\Longrightarrow \text{antisymmetric}$
$\boldsymbol{5} : \left|2,\!\!-\!2\right\rangle,\left|2,\!\!-\!1\right\rangle,\left|2,0\right\rangle,\left|2,\!\!+\!1\right\rangle,\left|2,\!\!+\!2\right\rangle \Longrightarrow \text{symmetric}$
(1)
Wigner Eugene P. "Group Theory and Its Application to Quantum Mechanics of Atomic Spectra" (1959) : as refered in the footnote of page 192 the two coefficients differ, using our symbols, by the factor $\left(-1\right)^{j_{\alpha}+j_{\beta}-j}$.