The action-functionals describing the motion $\mathbf{x}:[a,b]\to \mathbb{R}^3$ of a free particle of mass $m$ and the evolution $\varphi:[a,b]\times \Omega\to \mathbb{R}$ of a free scalar field of mass $m$ are, respectively, \begin{align}S[\mathbf{x}]:=&\int_a^b\frac{m}{2}\frac{\mathrm{d} \mathbf{x}}{\mathrm{d}t}^2\mathrm{d}t.\tag{1} \\S[\varphi]:=&\int_a^b\left(\int_{\Omega}\frac{m}{2}\mathrm{d}\varphi^2\,\mathrm{d}\mathbf{x}\right)\mathrm{d}t.\tag{2}\end{align} Where $\Omega\subset \mathbb{R}^3$ is a bounded region of space.
This leads me to think, based on the fact that free scalar quantum fields can be thought of as position space wavefunctions and vice versa, that if we make the substitution $$\varphi(\mathbf{x},t):=\delta^3(\mathbf{x}-\mathbf{x}(t))$$ and perform the integral over $\Omega$ in $(2)$, we should recover $(1)$. Is this true? If not, is it still possible to convert lagrangians to lagrangian densities?