2

$\omega_{\mu\nu}$ contains infinitesimal parameters and $J^{\mu\nu}$ contains generators of boost and rotation. Any 4-vector transforms as $p^\mu=\Lambda^\mu_\nu p^\nu$. Starting from given exponential form how shall I reach following form.

$$\begin{bmatrix} ct' \\ x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \gamma & -\gamma \beta_x & -\gamma \beta_y & -\gamma \beta_z \\ -\gamma \beta_x & 1 + (\gamma - 1) \frac{\beta^2_x}{\beta^2} & (\gamma - 1) \frac{\beta_x \beta_y}{\beta^2} & (\gamma - 1) \frac{\beta_x \beta_z}{\beta^2} \\ -\gamma \beta_y & (\gamma - 1) \frac{\beta_y \beta_x}{\beta^2} & 1 + (\gamma - 1) \frac{\beta^2_y}{\beta^2} & (\gamma - 1) \frac{\beta_y \beta_z}{\beta^2} \\ -\gamma \beta_z & (\gamma - 1) \frac{\beta_z \beta_x}{\beta^2} & (\gamma - 1) \frac{\beta_z \beta_y}{\beta^2} & 1 + (\gamma - 1) \frac{\beta^2_z}{\beta^2} \end{bmatrix}\begin{bmatrix} ct \\ x \\ y \\ z \end{bmatrix}.$$ I don't know what's wrong with my concepts here.

  • Start from the Lorentz transformations (see e.g. wikipedia and this Phys.SE answer); 2) make a linear approximation for $\beta \ll 1$ and write this infinitesimal transformation in matrix form; 3) exponentiate the matrix to obtain the desired result
  • – glS Feb 07 '15 at 14:01
  • http://qr.ae/1LYmWg – bolbteppa Aug 07 '16 at 01:59