0

Setup

  1. Given two states: $|K\rangle=a_i^+a_j^+|\rangle$ and $|L\rangle=a_k^+a_l^+|\rangle$.
  2. Evaluating the overlap: $\langle K|L\rangle=\langle|a_ja_ia_k^+a_l^+|\rangle$
  3. Introducing: $a_ia_k^+=\delta_{ik}-a_k^+a_i$
  4. Replacing 3 in 2 and solving: $\langle K|L\rangle=\langle|a_j(\delta_{ik}-a_k^+a_i)a_l^+|\rangle=\delta_{ik}\langle|a_ja_l^+|\rangle-\langle|a_ja_k^+a_ia_l^+|\rangle$

Question

Fourth term has two terms, how come is obtained:

$\langle K|L\rangle=\delta_{ik}\delta_{jl}\langle|\rangle-\delta_{ik}\langle|a_i^+a_j|\rangle-\delta_{il}\langle|a_ja_k^+|\rangle+\langle|a_ja_k^+a_l^+a_i|\rangle$

Qmechanic
  • 201,751

2 Answers2

1
  1. Introducing: $a_ia_k^+=\delta_{ik}-a_k^+a_i$
  2. Replacing 3 in 2 and solving: $\langle K|L\rangle=\langle|a_j(\delta_{ik}-a_k^+a_i)a_l^+|\rangle=\delta_{ik}\langle|a_ja_l^+|\rangle-\langle|a_ja_k^+a_ia_l^+|\rangle$

$\langle K|L\rangle=\langle|a_ja_ia_k^+a_l^+|\rangle$ $$ =\langle|a_j(\delta_{ik}-a_k^+a_i)a_l^+\rangle $$ $$ =\langle a_ja_l^+\rangle\delta_{ik}-\langle a_ja_k^+a_ia_l^+\rangle $$ $$ =\delta_{ik}\delta_{jl}-\langle a_l^+a_j\rangle\delta_{ik}-\langle a_ja_k^+a_ia_l^+\rangle $$ $$ =\delta_{ik}\delta_{jl}-\langle a_l^+a_j\rangle\delta_{ik}-\langle a_ja_k^+(\delta_{il}-a_l^+a_i)\rangle $$ $$ =\delta_{ik}\delta_{jl}-\langle a_l^+a_j\rangle\delta_{ik}-\langle a_ja_k^+\rangle\delta_{il} +\langle a_ja_k^+a_l^+a_i\rangle $$

hft
  • 19,536
1

Using the rule (3) you can sort the four operators in the order you prefer, by swapping terms. After each swapping, you obtain a piece with four operators, plus an additional one with two operators. And so on.

In your case, by swapping the second and the third term,

$$a_j a_i a_k^+ a_l^+ = - a_j a_k^+ a_i a_l^+ + \delta_{ki} a_j a_l^+ $$

and by swapping the third and the fourth in the first addendum

$$a_j a_i a_k^+ a_l^+ = - \delta_{il} a_j a_k^+ + a_j a_k^+ a_l^+ a_i + \delta_{ki} a_j a_l^+ $$

Finally swapping the terms in the third addendum

$$a_j a_i a_k^+ a_l^+ = - \delta_{il} a_j a_k^+ + a_j a_k^+ a_l^+ a_i + \delta_{ki} \delta_{jl} + \delta_{ki} a_l^+ a_j $$

which is the final result.

A motivation for doing this kind of manipulation could be, for example, to order each term in such a way that the destruction operators are on the right side. In this particular case one obtain

$$a_j a_i a_k^+ a_l^+ = a_k^+ a_l^+ a_j a_i - \delta_{jl} a_k^+ a_i + \delta_{il} a_k^+ a_j + \delta_{jk} a_l^+ a_i - \delta_{ik}a_l^+ a_j +\delta_{ik}\delta_{jl} - \delta_{jk}\delta_{il}$$

This is called "normal order". Note that, when the operator acts on the vacuum state, only the last two addenda survives.

GCLL
  • 893