Setup
- Given two states: $|K\rangle=a_i^+a_j^+|\rangle$ and $|L\rangle=a_k^+a_l^+|\rangle$.
- Evaluating the overlap: $\langle K|L\rangle=\langle|a_ja_ia_k^+a_l^+|\rangle$
- Introducing: $a_ia_k^+=\delta_{ik}-a_k^+a_i$
- Replacing 3 in 2 and solving: $\langle K|L\rangle=\langle|a_j(\delta_{ik}-a_k^+a_i)a_l^+|\rangle=\delta_{ik}\langle|a_ja_l^+|\rangle-\langle|a_ja_k^+a_ia_l^+|\rangle$
Question
Fourth term has two terms, how come is obtained:
$\langle K|L\rangle=\delta_{ik}\delta_{jl}\langle|\rangle-\delta_{ik}\langle|a_i^+a_j|\rangle-\delta_{il}\langle|a_ja_k^+|\rangle+\langle|a_ja_k^+a_l^+a_i|\rangle$