Is the following correct, when adding 3 angular momenta/spins: \begin{align} 1\otimes 1\otimes \frac{1}{2}&=\left(1\otimes 1\right)\otimes \frac{1}{2} \\ &=\left(2\oplus 1\oplus 0\right)\otimes \frac{1}{2} \\ &=\left(2\otimes \frac{1}{2}\right)\oplus \left(1\otimes \frac{1}{2}\right)\oplus \left(0\otimes \frac{1}{2}\right) \\ &=\left(\frac{5}{2}\oplus\frac{3}{2}\right)\oplus \left(\frac{3}{2} \oplus\frac{1}{2}\right)\oplus \left(\frac{1}{2}\right) \\ &=\frac{5}{2}\oplus\frac{3}{2}\oplus\frac{3}{2}\oplus\frac{1}{2}\oplus\frac{1}{2}. \end{align}
Comments:
- $\oplus$ and $\otimes$ are commutative.
- $0\otimes\frac{1}{2}$ makes $0$ disappear on the line before the last one... I don't understand that. It also happens with $0\otimes 1$, but that feels wrong. Can I not get a total spin of 0 in that case?