\begin{equation} \int\delta(E^2-\mathbf{p}^2-m^2)dE=\frac{1}{2E_\mathbf{p}} \end{equation}
Shouldn't integrating the delta function like this just give 1?
\begin{equation} \int\delta(E^2-\mathbf{p}^2-m^2)dE=\frac{1}{2E_\mathbf{p}} \end{equation}
Shouldn't integrating the delta function like this just give 1?
With the help from the comments this now makes sense.
\begin{equation} \int \delta(E^2-p^2-m^2)dE \end{equation} With $$E_p^2-p^2-m^2=0$$ Use substitutions \begin{equation} f(E)=E^2-p^2-m^2\quad df=2EdE \end{equation} \begin{equation} \int \delta(f)\frac{df}{2E(f)}=\frac{1}{2E_p} \end{equation} $E(f)$ is easily found by inverting $f$
Thanks!