Usually, the variation of a filed $\delta\phi$ is defined to be
\begin{equation}
\delta\phi\left(x\right)=\phi^{'}\left(x\right)-\phi\left(x\right)
\end{equation}
where the new field $\phi^{'}$ and old field $\phi$ are evaluated
at the same point, if we take a active transformation point of view.
So I think $\delta g_{\mu\nu}$ should be
\begin{equation}
\delta g_{\mu\nu}\left(x\right)=\hat{g}_{\mu\nu}\left(x\right)-g_{\mu\nu}\left(x\right)
\end{equation}
where they are evaluated at the same point.
So if you make a translation, $x_{\mu}\rightarrow x_{\mu}+\epsilon_{\mu}$,
then $\hat{g}_{\mu\nu}\left(x+\epsilon\right)=g_{\mu\nu}\left(x\right)$.
But
\begin{equation}
\hat{g}_{\mu\nu}\left(x+\epsilon\right)=\hat{g}_{\mu\nu}\left(x\right)+\epsilon^{\alpha}\partial_{\alpha}g_{\mu\nu}\left(x\right)
\end{equation}
So by our definition, we have
\begin{align*}
\delta g_{\mu\nu}\left(x\right) & =\hat{g}_{\mu\nu}\left(x\right)-g_{\mu\nu}\left(x\right)\\
& =\hat{g}_{\mu\nu}\left(x+\epsilon\right)-\epsilon^{\alpha}\partial_{\alpha}g_{\mu\nu}\left(x\right)-g_{\mu\nu}\left(x\right)\\
& =-\epsilon^{\alpha}\partial_{\alpha}g_{\mu\nu}\left(x\right)
\end{align*}