I was reading Polchinski, Vol. 2 pag 12, while I found (10.3.12a):
$$ e^{iH(z)}e^{-iH(z)}=\frac{1}{2z} + i\partial H(0) + 2zT^H_B(0) + O(z^2).\tag{10.3.12a} $$
Now I tried to do the OPE, what I get is
$$ \begin{split} e^{iH(z)}e^{-iH(z)} &= e^{-\log(2z)} + :e^{iH(z)}e^{-iH(-z)}:\\ &= \frac{1}{2z} + :e^{i(H(0)+z\partial H(0)}e^{-i(H(0)+z\partial H(0)}: + O(z^2)\\ &= \frac{1}{2z} + :e^{iH(0)}i(1+z\partial H(0))e^{-iH(0)}(-i)(1-z\partial H(0)):\\ &= \frac{1}{2z} + :1+2z\partial H(0): + O(z^2). \end{split} $$
Where is the mistake? How can I get Polchinski formula?
$$ e^{iH(z)}e^{-iH(0)} = \frac{1}{z}:e^{iH(z)}e^{-iH(0)}: = :\frac{1}{z}e^{iH(z)}e^{-iH(0)}: $$ so that $$ :e^{iH(z)}e^{-iH(0)}: = ::\frac{1}{z}e^{iH(z)}e^{-iH(0)}:: = \frac{1}{z}:e^{iH(z)}e^{-iH(0)}: $$ which seems to be a contraddiction...
– MaPo Jul 28 '15 at 21:36