Okay, one statement from Purcell's book goes like:
[...]Thus, we find the potential at $P_2$: $$\phi = \frac{1}{4\pi\epsilon_0} \int_{-\pi/2}^{\pi/2} 2\sigma\cos\theta d\theta = \frac{\sigma a}{\pi\epsilon_0}$$. Comparing this with $\sigma a/ 2\epsilon_0$, the potential at the center of the disk, we see that, as we should expect, the potential falls off the center to the edge of the disk. The electric field therefore, must have an outward component in the plane of the disk. That is why, we remarked earlier that the charge , if free to move, would redistribute itself towards the rim. To put it another way, our uniformly charged disk is not a surface of constant potential, which any conducting surface must be unless charge is moving.
Actually Mr. Purcell after deducing the potential at the rim of the uniformly-charged disk, which is an insulator, is telling that if it were a conductor-disk, then there would be a redistribution of the charge towards the rim of the disk as the potential is lesser there & electric field facing in that direction from the center towards the rim. Really? But how?? The field is created by the charges, right? Even he deduced the potential of the rim by integrating the contribution from all the charges in the disk. Then how, if the disk were a conductor, could the charge move towards the rim in response to, although-outward-electric field? It seems ridiculous as the electric field is created by the charges & of course the charges can't get bothered by their own field, isn't it??
But it is true that in a conducting-disk, the charges remain more dense at the rim. Then he seems to be right:( But I am not getting the logic how the charges redistribute in response of the field they created? Can anyone please explain & help me sort out the confusion? Thanks.