Given the Schrödinger equation
$i\hbar \frac{\partial}{\partial t}\Psi(\vec r_1,\vec r_2,t) =\left [ -\frac{\hbar^2}{2m_1}\nabla_{r_1}^2-\frac{\hbar^2}{2m_2}\nabla_{r_2}^2 +V(\vec r_1,\vec r_2)\right ]\Psi(\vec r_1,\vec r_2,t)$
where $r_{1,2}$ is the radial distance of the electron and proton respectively. A coordinate transformation $(\vec r_1,\vec r_2)\mapsto(\vec r,\vec R)$ with
$\vec r=\vec r_1-\vec r_2,\ \vec R=\frac{m_1\vec r_1 +m_2\vec r_2}{m_1+m_2}$
should yield
$i\hbar \frac{\partial}{\partial t}\Psi(\vec r,\vec R,t) =\left [ -\frac{\hbar^2}{2M}\nabla_{R}^2-\frac{\hbar^2}{2\mu}\nabla_{r}^2 +V(\vec r)\right ]\Psi(\vec r,\vec R,t)$
with $M=m_1+m_2, \ \mu =\frac{m_1m_2}{m_1+m_2}$
When I tried to transform the nabla operators I got a very different result. Therefore I am not sure how this transformation was done.
Here is my failed attempt:
$\frac{\partial }{\partial \vec r_2}=\frac{\partial \vec R}{\partial \vec r_2}\frac{\partial}{\partial \vec R},\ \frac{\vec R}{\partial \vec r_2}=\frac{m_2}{m_1+m_2}$
and
$\frac{\partial \vec r}{\partial \vec r_1}=1$
If I now insert I get the wrong result.