Consider a composite system $\mathcal{H}=\mathcal{H}_{A}\otimes\mathcal{H}_{B}$ where $\mathcal{H}_{A}$ and $\mathcal{H}_{B}$ are Hilbert spaces of constituent components (say two qubits).
Let $\rho_{AB}$ be a density operator on $\mathcal{H}$, i.e., $\rho_{AB} = \sum_{i}p_{i}|\psi_{i}\rangle\langle\psi_{i}|$ for $|\psi_{i}\rangle\in\mathcal{H}$.
Consider the special case of a pure state, $\rho_{AB} = |\psi\rangle\langle\psi|$. The following theorem holds: $$ \rho_{AB}\ \text{separable} \Leftrightarrow |\psi\rangle \ \text{separable} $$
By separable, I mean $$ \rho_{AB} = \sum_{i}p_{i}^\prime\rho_{A,i}\otimes\rho_{B,i} $$ where $\rho_{A,i}$ and $\rho_{B,i}$ are density operators on $\mathcal{H}_{A}$ and $\mathcal{H}_{B}$.
Questions:
Is there a similar result for the more general $\rho_{AB} = \sum_{i}p_{i}|\psi_{i}\rangle\langle\psi_{i}|$? Given $\rho_{AB}$ is separable, can we say anything about the separability of the $|\psi_{i}\rangle$s?
If $\rho_{AB}$ is not separable, does that mean that the systems are entangled?
How do the reduced density matrices $\operatorname{tr}_{A}(\rho_{AB})$ and $\operatorname{tr}_{B}(\rho_{AB})$ figure into all of these? (if they do so at all)