In Euclidean space, the invariant $s^2=x^2+y^2+z^2$ is equal to the length squares of the position vector $r$.
"Length", or "distance between points", is an coordiante-independent (invariant) notion. In three-dimensional Euclidean space, the points are flat to each other; that means: considering any five points, $\mathsf A$, $\mathsf B$, $\mathsf J$, $\mathsf K$, $\mathsf Q$, and given the ten pairwise distance values between them, $d[~\mathsf A, \mathsf B~]$, $d[~\mathsf A, \mathsf J~]$ ..., $d[~\mathsf K, \mathsf Q~]$, then their (normalized) Cayley-Menger determinant vanishes:
0 = $ \begin{array}{|cccccc|}
0 & \left(\frac{d[~\mathsf A, \mathsf B~]}{d[~\mathsf A, \mathsf B~]}\right)^2 & \left(\frac{d[~\mathsf A, \mathsf J~]}{d[~\mathsf A, \mathsf B~]}\right)^2 & \left(\frac{d[~\mathsf A, \mathsf K~]}{d[~\mathsf A, \mathsf B~]}\right)^2 & \left(\frac{d[~\mathsf A, \mathsf Q~]}{d[~\mathsf A, \mathsf B~]}\right)^2 & 1 & \\
\left(\frac{d[~\mathsf B, \mathsf A~]}{d[~\mathsf A, \mathsf B~]}\right)^2 & 0 & \left(\frac{d[~\mathsf B, \mathsf J~]}{d[~\mathsf A, \mathsf B~]}\right)^2 & \left(\frac{d[~\mathsf B, \mathsf K~]}{d[~\mathsf A, \mathsf B~]}\right)^2 & \left(\frac{d[~\mathsf B, \mathsf Q~]}{d[~\mathsf A, \mathsf B~]}\right)^2 & 1 & \\
\left(\frac{d[~\mathsf J, \mathsf A~]}{d[~\mathsf A, \mathsf B~]}\right)^2 & \left(\frac{d[~\mathsf J, \mathsf B~]}{d[~\mathsf A, \mathsf B~]}\right)^2 & 0 & \left(\frac{d[~\mathsf J, \mathsf K~]}{d[~\mathsf A, \mathsf B~]}\right)^2 & \left(\frac{d[~\mathsf J, \mathsf Q~]}{d[~\mathsf A, \mathsf B~]}\right)^2 & 1 & \\
\left(\frac{d[~\mathsf K, \mathsf A~]}{d[~\mathsf A, \mathsf B~]}\right)^2 & \left(\frac{d[~\mathsf K, \mathsf B~]}{d[~\mathsf A, \mathsf B~]}\right)^2 & \left(\frac{d[~\mathsf K, \mathsf J~]}{d[~\mathsf A, \mathsf B~]}\right)^2 & 0 & \left(\frac{d[~\mathsf K, \mathsf Q~]}{d[~\mathsf A, \mathsf B~]}\right)^2 & 1 & \\
\left(\frac{d[~\mathsf Q, \mathsf A~]}{d[~\mathsf A, \mathsf B~]}\right)^2 & \left(\frac{d[~\mathsf Q, \mathsf B~]}{d[~\mathsf A, \mathsf B~]}\right)^2 & \left(\frac{d[~\mathsf Q, \mathsf J~]}{d[~\mathsf A, \mathsf B~]}\right)^2 & \left(\frac{d[~\mathsf Q, \mathsf K~]}{d[~\mathsf A, \mathsf B~]}\right)^2 & 0 & 1 & \\
1 & 1 & 1 & 1 & 1 & 0 & \end{array}$.
If coordinate tuples $\{ x, y, z \} \in \mathbf R^3$ are assigned to all points of this space such that for any two points, $\mathsf A$ and $\mathsf B$
$$s^2[~\mathsf A, \mathsf B~] := (d[~\mathsf A, \mathsf B~])^2 = (x[~\mathsf B~] - x[~\mathsf A~])^2 + (y[~\mathsf B~] - y[~\mathsf A~])^2 + (z[~\mathsf B~] - z[~\mathsf A~])^2,$$
then such a coordinate assignment is called "Cartesian coordinates (of three-dimensional Euclidean space)".
On the other hand, in Minkowski space, the corresponding invariant quantity is defined as the square of the spacetime interval $s^2=x^2+y^2+z^2 - c^2 t^2$
Well, this (or perhaps some variant involving certain differences between coordinate values) may indeed be taken as a definition, as far as Minkowski space is founded on considerations of algebraic relations between certain coordinate tuples, rather than geometric relations. Consequently we may ask about interpretations of the quantity "$s^2$" in terms of geometry and physics.
Question: Is there a corresponding geometrical interpretation?
Sure:
a positive value of $s^2$ (between two distinct suitable events under consideration, say $\mathsf A$ and $\mathsf B$) is interpreted in terms of distance between two participants where one had taken part in event $\mathsf A$ and the other had taken part in event $\mathsf B$; specificly as the square of the minimum distance (or in case a minimum doesn't exist, the infimum of all distances) among all such pairs of participants;
a negative value $s^2$ (between two distinct suitable events under consideration, say $\mathsf J$ and $\mathsf K$) is interpreted in terms of duration of one participant between having taken part (first) in one of these two events, and (then) in the other; specificly as ("$(-1)~c^2$" times) the square of the maximum duration (or in case a maximum doesn't exist, the supremum of all durations) among all those participants;
a zero value $s^2$ (between two distinct suitable events under consideration, say $\mathsf P$ and $\mathsf Q$) is interpreted as the "signal front" of one event having reached the other event, and
for any one event: $s^2[~\mathsf A, \mathsf A~] = 0$, too.
Secondarily, why do they call this quantity an interval?
The word "interval" is obviously related to "(spatial or temporal) separation". Apparently, the people who applied this name to the quantity $s^2$ (rather than instead to the quantity "$\text{sgn}[~s^2~]~\sqrt{\text{sgn}[~s^2~]~s^2}$") weren't particularly bothered by $s^2$ referring to squares of distance or duration values.