If $L$ is a Lagrangian for a system of n degrees of freedom satisfying Lagrange's equations, show by direct substitution that $$L' = L + \frac{\mathrm{d}F(q_1,\dots,q_n,t)}{\mathrm{d}t}$$ also satisfies Lagrange's equation where $F$ is any arbitrarily, but differentiable function of its arguments.
So I think I got everything correct except I don't know why the last step vanishes?
\begin{align} \frac{d}{dt}&\frac{\partial M}{\partial \dot{q_j}} - \frac{\partial M}{\partial q_j} = \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial(L + \mathrm{d}F(q_1,\dots,q_n,t)/\mathrm{d}t)}{\partial \dot q_j} - \frac{\partial(L + \mathrm{d}F(q_1,\dots,q_n,t)/\mathrm{d}t)}{\partial \dot q_j}\\ &= \left(\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot q_j} - \frac{\partial L}{\partial q_j}\right) +\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial}{\partial \dot q_j}\frac{\mathrm{d}F(q_1,\dots,q_n,t)}{\mathrm{d}t}\right) \\ &\qquad-\left(\frac{\partial}{\partial q_j}\frac{\mathrm{d}F(q_1,\dots,q_n,t)}{\mathrm{d}t}\right)\tag{1} \end{align}
By chain rule we have $$\frac{\mathrm{d}F}{\mathrm{d}t} = \Sigma_i \frac{\partial F}{\partial q_i}\dot{q_i} \ + \frac{\partial F}{\partial t}$$
Notice since $L$ satisfies Euler-Lagrange equation the first two components of equation (1) vanishes. So equation (1) becomes
$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial}{\partial \dot q_j}\left(\Sigma_i \frac{\partial F}{\partial q_i}\dot{q_i} \ + \frac{\partial F}{\partial t}\right)\right) -\frac{\partial}{\partial q_j}\left(\Sigma_i \frac{\partial F}{\partial q_i}\dot{q_i} \ + \frac{\partial F}{\partial t}\right) \tag{2}$$
So why does Eq (2) vanish? Can someone explain?