I think for 1-dimensional bound states, this is the proof :
The expectation value of the momentum operator,
$\langle \hat{P} \rangle$=$\langle \psi|\hat{P} \psi\rangle$=$\int_{-\infty}^{+\infty}\psi^{*}(x)\frac{\hbar}{i}\frac{\partial}{\partial x}\psi(x)dx$=$\frac{\hbar}{i}\int_{-\infty}^{+\infty}\psi^{*}(x)\frac{\partial}{\partial x}\psi(x)dx$=$\frac{\hbar}{2i}\int_{-\infty}^{+\infty}\frac{\partial}{\partial x}({\psi}^2(x))dx$
=$\frac{\hbar}{2i}{\psi}^2(x) \Big|_{-\infty}^{+\infty}$= 0
Since $\psi(x)$=0 at x=$\pm \infty$ for bound states.
and similarly for position expectation value in the bound state,
$\langle \hat{x} \rangle$ = 0