Yes, it is possible, same as for Lagrangian action. Taking the Hamiltonian action as
$$
S_H\{q, p\} = \int_{t_i}^{t_f}{dt\; \left[p\dot{q} - H(q, p, t) \right]}
$$
consider an infinitesimal time shift $t' = t +\delta t$, with $q'(t') = q(t) +\delta q$, $p'(t') = p(t) +\delta p$, and assume invariance under time translations:
$$
S_H\{q, p\} = \int_{t_i}^{t_f}{dt\; \left[p\dot{q} - H(q, p, t) \right]} = \int_{t'_i}^{t'_f}{dt\; \left[p'\dot{q'} - H(q', p', t) \right]}
$$
The 2nd equality above gives
$$
\int_{t_i}^{t_f}{dt\; \left[p\dot{q} - H(q, p, t) \right]} = \int_{t_i + \delta t_i}^{t_f + \delta t_f}{dt\; \left[p\dot{q} - H(q, p, t) + p\delta \dot{q} + \dot{q}\delta p - \frac{\partial H}{\partial q}(q, p, t)\delta q - \frac{\partial H}{\partial p}(q, p, t)\delta p \right]}
$$
or after slight rearrangement,
$$
\left[p\dot{q} - H \right]\Big|_{t_f}\delta t_f - \left[p\dot{q} - H \right]\Big|_{t_i}\delta t_i + \int_{t_i + \delta t_i}^{t_f + \delta t_f}{dt\;\left[p\delta \dot{q} + \dot{q}\delta p + \dot{p}\delta q - \dot{q}\delta p \right]} = \\
= \int_{t_i}^{t_f}{dt\; \frac{d}{dt}\left[ p\dot{q}\delta t - H(q,p,t)\delta t + p\delta q\right]} = \int_{t_i}^{t_f}{dt\; \frac{d}{dt}\left[ 2 p\delta q - H(q,p,t)\delta t \right]} = 0
$$
where use is made of $\dot{q}\delta t = \delta q$ and the Hamiltonian EOMs, $
\dot{q}=\frac{\partial H}{\partial p}$, $\dot{p}=-\frac{\partial H}{\partial q}$. For a time translation that leaves end points invariant such that $\delta q\Big|_{t_i} = \delta q\Big|_{t_f} = 0$, the last equality above reduces to
$$
\frac{dH}{dt}(q, p, t) = 0
$$
or
$$
H(q, p, t) = const.
$$