Intro
I've been trying to show that the generator of boosts can be written in operator form as can be seen here, as:
$$ B = \sum_i m_i x_i(t) - t \sum_i p_i $$
As a reminder the transformation rules are:
$$ x\to x+Vt\\ p\to p+mV $$
In order to accomplish this I used procedure shown here, and I seem to run into inconsistency issues, which I can't figure out.
derivation
In short, if we have a multi particle state described by:
$$ \left|\psi\right\rangle=\left|p_1,p_2,..,p_N\right\rangle $$ then a boost should act as: $$ T_V\left|p_1,p_2,..,p_N\right\rangle=\left|p_1+m_1V,p_2+m_2V,..,p_N+m_NV\right\rangle $$
In the position base we get:
$$ \begin{split} &T_V\left|x_1,x_2,..,x_N\right\rangle=\left({1\over 2\pi}\right)^{-N/2}\int dp_1dp_2.. dp_N\prod_{i=1}^N e^{-ip_ix_i}T_V\left|p_1,p_2,..,p_N\right\rangle\\ &=\left({1\over 2\pi}\right)^{-N/2}\int dp_1dp_2.. dp_N\prod_{i=1}^N e^{-ip_ix_i}\left|p_1+m_1V,p_2+m_2V,..,p_N+m_NV\right\rangle\\ &=\left({1\over 2\pi}\right)^{-N/2}\int dp_1'dp_2'.. dp_N'\prod_{i=1}^N e^{-i\left(p_i'-m_iV\right)x_i}\left|p_1',p_2',..,p_N'\right\rangle\\ &=e^{i\sum_{i=1}^Nm_iVx_i}\left({1\over 2\pi}\right)^{-N/2}\int dp_1'dp_2'.. dp_N'\prod_{i=1}^N e^{-ip_i'x_i}\left|p_1',p_2',..,p_N'\right\rangle\\ &=e^{iV\sum_{i=1}^Nm_ix_i}\left|x_1,x_2,..,x_N\right\rangle=e^{iMVX_{cm}}\left|x_1,x_2,..,x_N\right\rangle \end{split} $$
Similarly we can obtain:
$$ \begin{split} &T_V\left|p_1,p_2,..,p_N\right\rangle=\left({1\over 2\pi}\right)^{-N/2}\int dx_1dx_2.. dx_N\prod_{i=1}^N e^{ip_ix_i}T_V\left|x_1,x_2,..,x_N\right\rangle=\\ &=\left({1\over 2\pi}\right)^{-N/2}\int dx_1dx_2.. dx_N\prod_{i=1}^N e^{ip_ix_i}\left|x_1+Vt,x_2+Vt,..,x_N+Vt\right\rangle\\ &=\left({1\over 2\pi}\right)^{-N/2}\int dx_1'dx_2'.. dx_N'\prod_{i=1}^N e^{i\left(x_i'-Vt\right)p_i}\left|x_1',x_2',..,x_N'\right\rangle\\ &=e^{i\sum_{i=1}^N-Vtp_i}\left({1\over 2\pi}\right)^{-N/2}\int dx_1'dx_2'.. dx_N'\prod_{i=1}^N e^{ip_ix_i'}\left|x_1',x_2',..,x_N'\right\rangle\\ &=e^{-iV\sum_{i=1}^Np_i}\left|p_1,p_2,..,p_N\right\rangle=e^{-iVtP}\left|p_1,p_2,..,p_N\right\rangle \end{split} $$
This would Suggest that our proposed generator is indeed the generator of boosts.
my main issue
There are two ways to formulate my problem:
My first step in the derivation assumed that the boost changes the momentum state, while the second step shows that the momentum basis is supposedly an eigenbasis of the boost. The same issue is true for the position.
I assumed that the transformation changes the coordinates, and momenta. This is the basic concept of Galilean relativity, how come I'm getting that any of them is an eigenvector of the boost?