I am a undergraduate student in physics. I found this page that shows a way to prove the commutator between Runge-Lenz vector and Hamiltonian .$\left [\hat{A}_{i},\hat{H}\right]=0$
I believe he did a good job on it. But for some reason, I don't know why $$\left[ \frac{r_i}{r},\hat{p}_l \right]=i\left( \frac{\delta_{il}}{r}-\frac{r_i r_l}{r^3} \right)\,.$$ Then, I changed the notation and I did some calculations to try to understand how he made it. Take a look.
For $\hbar=1$, we have $\hat{P}_{l}=-i\frac{\partial}{\partial X_{i}}$, then:
\begin{align}\left[ \frac{r_i}{r},\hat{P}_l \right]&=\frac{r_{i}}{r}\left(-i\frac{\partial}{\partial X_{l}}\right)+i\frac{\partial}{\partial X_{l}}\left( \frac{r_{i}}{r} \right )\\& =i\frac{\partial}{\partial X_{l}}\left( \frac{r_{i}}{r} \right )-i\frac{r_{i}}{r}\left(\frac{\partial}{\partial X_{l}}\right)\\ &=i\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z} \right) \left(\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}+\ldots +\ldots\right)-i\frac{r_{i}}{r}\left(\frac{\partial}{\partial X_{l}}\right)\\& =i\left(\frac{y^{2}+z^{2}}{\left({x^{2}+y^{2}+z^{2}}\right)^{3/2}}+\frac{x^{2}+z^{2}}{\left({x^{2}+y^{2}+z^{2}}\right)^{3/2}}+\frac{x^{2}+y^{2}}{\left({x^{2}+y^{2}+z^{2}}\right)^{3/2}}\right)-i\frac{r_{i}}{r}\left(\frac{\partial}{\partial X_{l}}\right)\\& =2i\left(\frac{x^{2}+y^{2}+z^{2}}{r^{3}}\right)-i\frac{r_{i}}{r}\left(\frac{\partial}{\partial X_{l}}\right)\\& =2i\left(\frac{r^2}{r^{3}}\right)-i\frac{r_{i}}{r}\left(\frac{\partial}{\partial X_{l}}\right)\end{align}
What have I done wrong? If not, what is the next step?