let be $ N(x)= \sum_{n} H(x-E_{n}) $ the eingenvalue 'staircase' function
and let be a system so $ V(x)=V(-x)$ and $ V^{-1}(x)=\sqrt \pi \frac{d^{1/2}}{dx^{1/2}} N(x) $
then would it be true that the two function
$\sum_{n}exp(-tE_{n})=Z(t)= \int_{0}^{\infty}dN(x)exp(-tx) $
and $ \int_{0}^{\infty}dx\int_{0}^{\infty}dpexp(-tp^{2}-tV(x))=U(t) $
would be equal ?? i have just compared the two results
$\int_{0}^{\infty}dnN(x)exp(-tx)=\int_{0}^{\infty}dx\int_{0}^{\infty}dpexp(-tp^{2}-tV(x)) $
i have taken the Laplace transform inside and get the desired result assuming that the potential V(x) is EVEN