I am trying to visualize a Hamiltonian H=$\hat{\sigma_x}$ $$ \hat{\sigma}_{x} = \left( \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) $$ acting on the state $| 1 \rangle$.
I can write the state of the qubit at time $t$ by Schrodinger's equation as: $$e^{-iHt} = e^{-i\hat{\sigma_x}t} \, .$$
By Euler's formula, since $H^2 = I$, the general state is $$| \psi (t) \rangle = \left( \begin{array}{cc} \cos t & -i \sin t \\ -i \sin t & \cos t \end{array} \right) \left( \begin{array}{cc} 0 \\ 1 \end{array} \right) \, .$$
Using $$\lvert\Psi\rangle=\cos(\theta / 2) \lvert 0\rangle + e^{i\phi}\sin(\theta / 2) \lvert 1\rangle$$
I write $| \psi \rangle $ as $$| \psi \rangle = \cos( 2t/2 + \pi/2)\left( \begin{array}{cc} 1 \\ 0 \end{array} \right) + e^{-i*0} \sin( 2t/2 + \pi/2)\left( \begin{array}{cc} 0 \\ 1 \end{array} \right) \, .$$
Thus, $ \theta = 2t + \pi$ and $\phi = 0$.
I am struggling with how to represent the angle $\theta$ on the Bloch sphere. Where would $\theta$ point in this case, where we have a $\pi$ term and $2t$ term together? Please give me a graphical answer so I can see the evolution of the qubit $|1\rangle$ and how to extend this visual image to cases of $-\pi/2$, $\pi/4$, $2t$, $4t$, etc.